| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-bn | Structured version Visualization version GIF version | ||
| Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| df-bn | ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbn 25367 | . 2 class Ban | |
| 2 | vw | . . . . . 6 setvar 𝑤 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑤 |
| 4 | csca 17300 | . . . . 5 class Scalar | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (Scalar‘𝑤) |
| 6 | ccms 25366 | . . . 4 class CMetSp | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (Scalar‘𝑤) ∈ CMetSp |
| 8 | cnvc 24594 | . . . 4 class NrmVec | |
| 9 | 8, 6 | cin 3950 | . . 3 class (NrmVec ∩ CMetSp) |
| 10 | 7, 2, 9 | crab 3436 | . 2 class {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} |
| 11 | 1, 10 | wceq 1540 | 1 wff Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} |
| Colors of variables: wff setvar class |
| This definition is referenced by: isbn 25372 |
| Copyright terms: Public domain | W3C validator |