Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-bn | Structured version Visualization version GIF version |
Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
df-bn | ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbn 24402 | . 2 class Ban | |
2 | vw | . . . . . 6 setvar 𝑤 | |
3 | 2 | cv 1538 | . . . . 5 class 𝑤 |
4 | csca 16891 | . . . . 5 class Scalar | |
5 | 3, 4 | cfv 6418 | . . . 4 class (Scalar‘𝑤) |
6 | ccms 24401 | . . . 4 class CMetSp | |
7 | 5, 6 | wcel 2108 | . . 3 wff (Scalar‘𝑤) ∈ CMetSp |
8 | cnvc 23643 | . . . 4 class NrmVec | |
9 | 8, 6 | cin 3882 | . . 3 class (NrmVec ∩ CMetSp) |
10 | 7, 2, 9 | crab 3067 | . 2 class {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} |
11 | 1, 10 | wceq 1539 | 1 wff Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp} |
Colors of variables: wff setvar class |
This definition is referenced by: isbn 24407 |
Copyright terms: Public domain | W3C validator |