MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Visualization version   GIF version

Theorem iscms 24509
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
iscms (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))

Proof of Theorem iscms
Dummy variables 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6789 . . 3 (𝑤 = 𝑀 → (Base‘𝑤) ∈ V)
2 fveq2 6774 . . . . . . 7 (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀))
32adantr 481 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀))
4 id 22 . . . . . . . 8 (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤))
5 fveq2 6774 . . . . . . . . 9 (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀))
6 iscms.1 . . . . . . . . 9 𝑋 = (Base‘𝑀)
75, 6eqtr4di 2796 . . . . . . . 8 (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋)
84, 7sylan9eqr 2800 . . . . . . 7 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋)
98sqxpeqd 5621 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋))
103, 9reseq12d 5892 . . . . 5 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
11 iscms.2 . . . . 5 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
1210, 11eqtr4di 2796 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷)
138fveq2d 6778 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋))
1412, 13eleq12d 2833 . . 3 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
151, 14sbcied 3761 . 2 (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
16 df-cms 24499 . 2 CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)}
1715, 16elrab2 3627 1 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  [wsbc 3716   × cxp 5587  cres 5591  cfv 6433  Basecbs 16912  distcds 16971  MetSpcms 23471  CMetccmet 24418  CMetSpccms 24496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-res 5601  df-iota 6391  df-fv 6441  df-cms 24499
This theorem is referenced by:  cmscmet  24510  cmsms  24512  cmspropd  24513  cmssmscld  24514  cmsss  24515  cncms  24519  cmscsscms  24537  cssbn  24539
  Copyright terms: Public domain W3C validator