MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Visualization version   GIF version

Theorem iscms 24414
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
iscms (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))

Proof of Theorem iscms
Dummy variables 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6771 . . 3 (𝑤 = 𝑀 → (Base‘𝑤) ∈ V)
2 fveq2 6756 . . . . . . 7 (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀))
32adantr 480 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀))
4 id 22 . . . . . . . 8 (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤))
5 fveq2 6756 . . . . . . . . 9 (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀))
6 iscms.1 . . . . . . . . 9 𝑋 = (Base‘𝑀)
75, 6eqtr4di 2797 . . . . . . . 8 (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋)
84, 7sylan9eqr 2801 . . . . . . 7 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋)
98sqxpeqd 5612 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋))
103, 9reseq12d 5881 . . . . 5 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
11 iscms.2 . . . . 5 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
1210, 11eqtr4di 2797 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷)
138fveq2d 6760 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋))
1412, 13eleq12d 2833 . . 3 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
151, 14sbcied 3756 . 2 (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
16 df-cms 24404 . 2 CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)}
1715, 16elrab2 3620 1 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  distcds 16897  MetSpcms 23379  CMetccmet 24323  CMetSpccms 24401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-cms 24404
This theorem is referenced by:  cmscmet  24415  cmsms  24417  cmspropd  24418  cmssmscld  24419  cmsss  24420  cncms  24424  cmscsscms  24442  cssbn  24444
  Copyright terms: Public domain W3C validator