Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscms | Structured version Visualization version GIF version |
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
iscms.1 | ⊢ 𝑋 = (Base‘𝑀) |
iscms.2 | ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
iscms | ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6789 | . . 3 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) ∈ V) | |
2 | fveq2 6774 | . . . . . . 7 ⊢ (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀)) | |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀)) |
4 | id 22 | . . . . . . . 8 ⊢ (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤)) | |
5 | fveq2 6774 | . . . . . . . . 9 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀)) | |
6 | iscms.1 | . . . . . . . . 9 ⊢ 𝑋 = (Base‘𝑀) | |
7 | 5, 6 | eqtr4di 2796 | . . . . . . . 8 ⊢ (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋) |
8 | 4, 7 | sylan9eqr 2800 | . . . . . . 7 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋) |
9 | 8 | sqxpeqd 5621 | . . . . . 6 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋)) |
10 | 3, 9 | reseq12d 5892 | . . . . 5 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
11 | iscms.2 | . . . . 5 ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) | |
12 | 10, 11 | eqtr4di 2796 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷) |
13 | 8 | fveq2d 6778 | . . . 4 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋)) |
14 | 12, 13 | eleq12d 2833 | . . 3 ⊢ ((𝑤 = 𝑀 ∧ 𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
15 | 1, 14 | sbcied 3761 | . 2 ⊢ (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋))) |
16 | df-cms 24499 | . 2 ⊢ CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} | |
17 | 15, 16 | elrab2 3627 | 1 ⊢ (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 [wsbc 3716 × cxp 5587 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 distcds 16971 MetSpcms 23471 CMetccmet 24418 CMetSpccms 24496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-cms 24499 |
This theorem is referenced by: cmscmet 24510 cmsms 24512 cmspropd 24513 cmssmscld 24514 cmsss 24515 cncms 24519 cmscsscms 24537 cssbn 24539 |
Copyright terms: Public domain | W3C validator |