MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Visualization version   GIF version

Theorem iscms 24853
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Baseβ€˜π‘€)
iscms.2 𝐷 = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋))
Assertion
Ref Expression
iscms (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMetβ€˜π‘‹)))

Proof of Theorem iscms
Dummy variables 𝑀 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6903 . . 3 (𝑀 = 𝑀 β†’ (Baseβ€˜π‘€) ∈ V)
2 fveq2 6888 . . . . . . 7 (𝑀 = 𝑀 β†’ (distβ€˜π‘€) = (distβ€˜π‘€))
32adantr 481 . . . . . 6 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ (distβ€˜π‘€) = (distβ€˜π‘€))
4 id 22 . . . . . . . 8 (𝑏 = (Baseβ€˜π‘€) β†’ 𝑏 = (Baseβ€˜π‘€))
5 fveq2 6888 . . . . . . . . 9 (𝑀 = 𝑀 β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘€))
6 iscms.1 . . . . . . . . 9 𝑋 = (Baseβ€˜π‘€)
75, 6eqtr4di 2790 . . . . . . . 8 (𝑀 = 𝑀 β†’ (Baseβ€˜π‘€) = 𝑋)
84, 7sylan9eqr 2794 . . . . . . 7 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ 𝑏 = 𝑋)
98sqxpeqd 5707 . . . . . 6 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ (𝑏 Γ— 𝑏) = (𝑋 Γ— 𝑋))
103, 9reseq12d 5980 . . . . 5 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ ((distβ€˜π‘€) β†Ύ (𝑏 Γ— 𝑏)) = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋)))
11 iscms.2 . . . . 5 𝐷 = ((distβ€˜π‘€) β†Ύ (𝑋 Γ— 𝑋))
1210, 11eqtr4di 2790 . . . 4 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ ((distβ€˜π‘€) β†Ύ (𝑏 Γ— 𝑏)) = 𝐷)
138fveq2d 6892 . . . 4 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ (CMetβ€˜π‘) = (CMetβ€˜π‘‹))
1412, 13eleq12d 2827 . . 3 ((𝑀 = 𝑀 ∧ 𝑏 = (Baseβ€˜π‘€)) β†’ (((distβ€˜π‘€) β†Ύ (𝑏 Γ— 𝑏)) ∈ (CMetβ€˜π‘) ↔ 𝐷 ∈ (CMetβ€˜π‘‹)))
151, 14sbcied 3821 . 2 (𝑀 = 𝑀 β†’ ([(Baseβ€˜π‘€) / 𝑏]((distβ€˜π‘€) β†Ύ (𝑏 Γ— 𝑏)) ∈ (CMetβ€˜π‘) ↔ 𝐷 ∈ (CMetβ€˜π‘‹)))
16 df-cms 24843 . 2 CMetSp = {𝑀 ∈ MetSp ∣ [(Baseβ€˜π‘€) / 𝑏]((distβ€˜π‘€) β†Ύ (𝑏 Γ— 𝑏)) ∈ (CMetβ€˜π‘)}
1715, 16elrab2 3685 1 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMetβ€˜π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474  [wsbc 3776   Γ— cxp 5673   β†Ύ cres 5677  β€˜cfv 6540  Basecbs 17140  distcds 17202  MetSpcms 23815  CMetccmet 24762  CMetSpccms 24840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-res 5687  df-iota 6492  df-fv 6548  df-cms 24843
This theorem is referenced by:  cmscmet  24854  cmsms  24856  cmspropd  24857  cmssmscld  24858  cmsss  24859  cncms  24863  cmscsscms  24881  cssbn  24883
  Copyright terms: Public domain W3C validator