MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Structured version   Visualization version   GIF version

Theorem iscms 25245
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1 𝑋 = (Base‘𝑀)
iscms.2 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
iscms (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))

Proof of Theorem iscms
Dummy variables 𝑤 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6873 . . 3 (𝑤 = 𝑀 → (Base‘𝑤) ∈ V)
2 fveq2 6858 . . . . . . 7 (𝑤 = 𝑀 → (dist‘𝑤) = (dist‘𝑀))
32adantr 480 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (dist‘𝑤) = (dist‘𝑀))
4 id 22 . . . . . . . 8 (𝑏 = (Base‘𝑤) → 𝑏 = (Base‘𝑤))
5 fveq2 6858 . . . . . . . . 9 (𝑤 = 𝑀 → (Base‘𝑤) = (Base‘𝑀))
6 iscms.1 . . . . . . . . 9 𝑋 = (Base‘𝑀)
75, 6eqtr4di 2782 . . . . . . . 8 (𝑤 = 𝑀 → (Base‘𝑤) = 𝑋)
84, 7sylan9eqr 2786 . . . . . . 7 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → 𝑏 = 𝑋)
98sqxpeqd 5670 . . . . . 6 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (𝑏 × 𝑏) = (𝑋 × 𝑋))
103, 9reseq12d 5951 . . . . 5 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
11 iscms.2 . . . . 5 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))
1210, 11eqtr4di 2782 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → ((dist‘𝑤) ↾ (𝑏 × 𝑏)) = 𝐷)
138fveq2d 6862 . . . 4 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (CMet‘𝑏) = (CMet‘𝑋))
1412, 13eleq12d 2822 . . 3 ((𝑤 = 𝑀𝑏 = (Base‘𝑤)) → (((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
151, 14sbcied 3797 . 2 (𝑤 = 𝑀 → ([(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏) ↔ 𝐷 ∈ (CMet‘𝑋)))
16 df-cms 25235 . 2 CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)}
1715, 16elrab2 3662 1 (𝑀 ∈ CMetSp ↔ (𝑀 ∈ MetSp ∧ 𝐷 ∈ (CMet‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  [wsbc 3753   × cxp 5636  cres 5640  cfv 6511  Basecbs 17179  distcds 17229  MetSpcms 24206  CMetccmet 25154  CMetSpccms 25232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-res 5650  df-iota 6464  df-fv 6519  df-cms 25235
This theorem is referenced by:  cmscmet  25246  cmsms  25248  cmspropd  25249  cmssmscld  25250  cmsss  25251  cncms  25255  cmscsscms  25273  cssbn  25275
  Copyright terms: Public domain W3C validator