Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cmtN Structured version   Visualization version   GIF version

Definition df-cmtN 38350
Description: Define the commutes relation for orthoposets. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Nov-2011.)
Assertion
Ref Expression
df-cmtN cm = (𝑝 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))})
Distinct variable group:   π‘₯,𝑝,𝑦

Detailed syntax breakdown of Definition df-cmtN
StepHypRef Expression
1 ccmtN 38346 . 2 class cm
2 vp . . 3 setvar 𝑝
3 cvv 3472 . . 3 class V
4 vx . . . . . . 7 setvar π‘₯
54cv 1538 . . . . . 6 class π‘₯
62cv 1538 . . . . . . 7 class 𝑝
7 cbs 17148 . . . . . . 7 class Base
86, 7cfv 6542 . . . . . 6 class (Baseβ€˜π‘)
95, 8wcel 2104 . . . . 5 wff π‘₯ ∈ (Baseβ€˜π‘)
10 vy . . . . . . 7 setvar 𝑦
1110cv 1538 . . . . . 6 class 𝑦
1211, 8wcel 2104 . . . . 5 wff 𝑦 ∈ (Baseβ€˜π‘)
13 cmee 18269 . . . . . . . . 9 class meet
146, 13cfv 6542 . . . . . . . 8 class (meetβ€˜π‘)
155, 11, 14co 7411 . . . . . . 7 class (π‘₯(meetβ€˜π‘)𝑦)
16 coc 17209 . . . . . . . . . 10 class oc
176, 16cfv 6542 . . . . . . . . 9 class (ocβ€˜π‘)
1811, 17cfv 6542 . . . . . . . 8 class ((ocβ€˜π‘)β€˜π‘¦)
195, 18, 14co 7411 . . . . . . 7 class (π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))
20 cjn 18268 . . . . . . . 8 class join
216, 20cfv 6542 . . . . . . 7 class (joinβ€˜π‘)
2215, 19, 21co 7411 . . . . . 6 class ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦)))
235, 22wceq 1539 . . . . 5 wff π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦)))
249, 12, 23w3a 1085 . . . 4 wff (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))
2524, 4, 10copab 5209 . . 3 class {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))}
262, 3, 25cmpt 5230 . 2 class (𝑝 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))})
271, 26wceq 1539 1 wff cm = (𝑝 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))})
Colors of variables: wff setvar class
This definition is referenced by:  cmtfvalN  38383
  Copyright terms: Public domain W3C validator