Detailed syntax breakdown of Definition df-cmtN
Step | Hyp | Ref
| Expression |
1 | | ccmtN 37187 |
. 2
class
cm |
2 | | vp |
. . 3
setvar 𝑝 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vx |
. . . . . . 7
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑥 |
6 | 2 | cv 1538 |
. . . . . . 7
class 𝑝 |
7 | | cbs 16912 |
. . . . . . 7
class
Base |
8 | 6, 7 | cfv 6433 |
. . . . . 6
class
(Base‘𝑝) |
9 | 5, 8 | wcel 2106 |
. . . . 5
wff 𝑥 ∈ (Base‘𝑝) |
10 | | vy |
. . . . . . 7
setvar 𝑦 |
11 | 10 | cv 1538 |
. . . . . 6
class 𝑦 |
12 | 11, 8 | wcel 2106 |
. . . . 5
wff 𝑦 ∈ (Base‘𝑝) |
13 | | cmee 18030 |
. . . . . . . . 9
class
meet |
14 | 6, 13 | cfv 6433 |
. . . . . . . 8
class
(meet‘𝑝) |
15 | 5, 11, 14 | co 7275 |
. . . . . . 7
class (𝑥(meet‘𝑝)𝑦) |
16 | | coc 16970 |
. . . . . . . . . 10
class
oc |
17 | 6, 16 | cfv 6433 |
. . . . . . . . 9
class
(oc‘𝑝) |
18 | 11, 17 | cfv 6433 |
. . . . . . . 8
class
((oc‘𝑝)‘𝑦) |
19 | 5, 18, 14 | co 7275 |
. . . . . . 7
class (𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)) |
20 | | cjn 18029 |
. . . . . . . 8
class
join |
21 | 6, 20 | cfv 6433 |
. . . . . . 7
class
(join‘𝑝) |
22 | 15, 19, 21 | co 7275 |
. . . . . 6
class ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) |
23 | 5, 22 | wceq 1539 |
. . . . 5
wff 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) |
24 | 9, 12, 23 | w3a 1086 |
. . . 4
wff (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)))) |
25 | 24, 4, 10 | copab 5136 |
. . 3
class
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))} |
26 | 2, 3, 25 | cmpt 5157 |
. 2
class (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) |
27 | 1, 26 | wceq 1539 |
1
wff cm = (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) |