Detailed syntax breakdown of Definition df-oposet
Step | Hyp | Ref
| Expression |
1 | | cops 37193 |
. 2
class
OP |
2 | | vp |
. . . . . . . 8
setvar 𝑝 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑝 |
4 | | cbs 16921 |
. . . . . . 7
class
Base |
5 | 3, 4 | cfv 6437 |
. . . . . 6
class
(Base‘𝑝) |
6 | | club 18036 |
. . . . . . . 8
class
lub |
7 | 3, 6 | cfv 6437 |
. . . . . . 7
class
(lub‘𝑝) |
8 | 7 | cdm 5590 |
. . . . . 6
class dom
(lub‘𝑝) |
9 | 5, 8 | wcel 2107 |
. . . . 5
wff
(Base‘𝑝)
∈ dom (lub‘𝑝) |
10 | | cglb 18037 |
. . . . . . . 8
class
glb |
11 | 3, 10 | cfv 6437 |
. . . . . . 7
class
(glb‘𝑝) |
12 | 11 | cdm 5590 |
. . . . . 6
class dom
(glb‘𝑝) |
13 | 5, 12 | wcel 2107 |
. . . . 5
wff
(Base‘𝑝)
∈ dom (glb‘𝑝) |
14 | 9, 13 | wa 396 |
. . . 4
wff
((Base‘𝑝)
∈ dom (lub‘𝑝)
∧ (Base‘𝑝) ∈
dom (glb‘𝑝)) |
15 | | vo |
. . . . . . . 8
setvar 𝑜 |
16 | 15 | cv 1538 |
. . . . . . 7
class 𝑜 |
17 | | coc 16979 |
. . . . . . . 8
class
oc |
18 | 3, 17 | cfv 6437 |
. . . . . . 7
class
(oc‘𝑝) |
19 | 16, 18 | wceq 1539 |
. . . . . 6
wff 𝑜 = (oc‘𝑝) |
20 | | va |
. . . . . . . . . . . . 13
setvar 𝑎 |
21 | 20 | cv 1538 |
. . . . . . . . . . . 12
class 𝑎 |
22 | 21, 16 | cfv 6437 |
. . . . . . . . . . 11
class (𝑜‘𝑎) |
23 | 22, 5 | wcel 2107 |
. . . . . . . . . 10
wff (𝑜‘𝑎) ∈ (Base‘𝑝) |
24 | 22, 16 | cfv 6437 |
. . . . . . . . . . 11
class (𝑜‘(𝑜‘𝑎)) |
25 | 24, 21 | wceq 1539 |
. . . . . . . . . 10
wff (𝑜‘(𝑜‘𝑎)) = 𝑎 |
26 | | vb |
. . . . . . . . . . . . 13
setvar 𝑏 |
27 | 26 | cv 1538 |
. . . . . . . . . . . 12
class 𝑏 |
28 | | cple 16978 |
. . . . . . . . . . . . 13
class
le |
29 | 3, 28 | cfv 6437 |
. . . . . . . . . . . 12
class
(le‘𝑝) |
30 | 21, 27, 29 | wbr 5075 |
. . . . . . . . . . 11
wff 𝑎(le‘𝑝)𝑏 |
31 | 27, 16 | cfv 6437 |
. . . . . . . . . . . 12
class (𝑜‘𝑏) |
32 | 31, 22, 29 | wbr 5075 |
. . . . . . . . . . 11
wff (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎) |
33 | 30, 32 | wi 4 |
. . . . . . . . . 10
wff (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎)) |
34 | 23, 25, 33 | w3a 1086 |
. . . . . . . . 9
wff ((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) |
35 | | cjn 18038 |
. . . . . . . . . . . 12
class
join |
36 | 3, 35 | cfv 6437 |
. . . . . . . . . . 11
class
(join‘𝑝) |
37 | 21, 22, 36 | co 7284 |
. . . . . . . . . 10
class (𝑎(join‘𝑝)(𝑜‘𝑎)) |
38 | | cp1 18151 |
. . . . . . . . . . 11
class
1. |
39 | 3, 38 | cfv 6437 |
. . . . . . . . . 10
class
(1.‘𝑝) |
40 | 37, 39 | wceq 1539 |
. . . . . . . . 9
wff (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) |
41 | | cmee 18039 |
. . . . . . . . . . . 12
class
meet |
42 | 3, 41 | cfv 6437 |
. . . . . . . . . . 11
class
(meet‘𝑝) |
43 | 21, 22, 42 | co 7284 |
. . . . . . . . . 10
class (𝑎(meet‘𝑝)(𝑜‘𝑎)) |
44 | | cp0 18150 |
. . . . . . . . . . 11
class
0. |
45 | 3, 44 | cfv 6437 |
. . . . . . . . . 10
class
(0.‘𝑝) |
46 | 43, 45 | wceq 1539 |
. . . . . . . . 9
wff (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝) |
47 | 34, 40, 46 | w3a 1086 |
. . . . . . . 8
wff (((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝)) |
48 | 47, 26, 5 | wral 3065 |
. . . . . . 7
wff
∀𝑏 ∈
(Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝)) |
49 | 48, 20, 5 | wral 3065 |
. . . . . 6
wff
∀𝑎 ∈
(Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝)) |
50 | 19, 49 | wa 396 |
. . . . 5
wff (𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))) |
51 | 50, 15 | wex 1782 |
. . . 4
wff
∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))) |
52 | 14, 51 | wa 396 |
. . 3
wff
(((Base‘𝑝)
∈ dom (lub‘𝑝)
∧ (Base‘𝑝) ∈
dom (glb‘𝑝)) ∧
∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝)))) |
53 | | cpo 18034 |
. . 3
class
Poset |
54 | 52, 2, 53 | crab 3069 |
. 2
class {𝑝 ∈ Poset ∣
(((Base‘𝑝) ∈ dom
(lub‘𝑝) ∧
(Base‘𝑝) ∈ dom
(glb‘𝑝)) ∧
∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} |
55 | 1, 54 | wceq 1539 |
1
wff OP = {𝑝 ∈ Poset ∣
(((Base‘𝑝) ∈ dom
(lub‘𝑝) ∧
(Base‘𝑝) ∈ dom
(glb‘𝑝)) ∧
∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} |