| Metamath
Proof Explorer Theorem List (p. 384 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rnresequniqs 38301 | The range of a restriction is equal to the union of the quotient set. (Contributed by Peter Mazsa, 19-May-2018.) |
| ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → ran (𝑅 ↾ 𝐴) = ∪ (𝐴 / 𝑅)) | ||
| Theorem | n0el2 38302 | Two ways of expressing that the empty set is not an element of a class. (Contributed by Peter Mazsa, 31-Jan-2018.) |
| ⊢ (¬ ∅ ∈ 𝐴 ↔ dom (◡ E ↾ 𝐴) = 𝐴) | ||
| Theorem | cnvepresex 38303 | Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) | ||
| Theorem | cnvepima 38304 | The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) | ||
| Theorem | inex3 38305 | Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) | ||
| Theorem | inxpex 38306 | Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.) |
| ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | ||
| Theorem | eqres 38307 | Converting a class constant definition by restriction (like df-ers 38640 or df-parts 38742) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018.) |
| ⊢ 𝑅 = (𝑆 ↾ 𝐶) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴𝑆𝐵))) | ||
| Theorem | brrabga 38308* | The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉𝑅𝐶 ↔ 𝜓)) | ||
| Theorem | brcnvrabga 38309* | The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅〈𝐵, 𝐶〉 ↔ 𝜓)) | ||
| Theorem | opideq 38310 | Equality conditions for ordered pairs 〈𝐴, 𝐴〉 and 〈𝐵, 𝐵〉. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ 𝐴 = 𝐵)) | ||
| Theorem | iss2 38311 | A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴))) | ||
| Theorem | eldmcnv 38312* | Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
| Theorem | dfrel5 38313 | Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018.) |
| ⊢ (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅) | ||
| Theorem | dfrel6 38314 | Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019.) |
| ⊢ (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) | ||
| Theorem | cnvresrn 38315 | Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021.) |
| ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 | ||
| Theorem | relssinxpdmrn 38316 | Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.) |
| ⊢ (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) | ||
| Theorem | cnvref4 38317 | Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023.) |
| ⊢ (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) | ||
| Theorem | cnvref5 38318* | Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.) |
| ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) | ||
| Theorem | ecin0 38319* | Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) | ||
| Theorem | ecinn0 38320* | Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
| Theorem | ineleq 38321* | Equivalence of restricted universal quantifications. (Contributed by Peter Mazsa, 29-May-2018.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ∨ (𝐶 ∩ 𝐷) = ∅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐵 ((𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷) → 𝑥 = 𝑦)) | ||
| Theorem | inecmo 38322* | Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) | ||
| Theorem | inecmo2 38323* | Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) (Revised by Peter Mazsa, 2-Sep-2021.) |
| ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | ineccnvmo 38324* | Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.) |
| ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) | ||
| Theorem | alrmomorn 38325 | Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.) |
| ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) | ||
| Theorem | alrmomodm 38326* | Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) | ||
| Theorem | ineccnvmo2 38327* | Equivalence of a double universal quantification restricted to the range and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 4-Sep-2021.) |
| ⊢ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥) | ||
| Theorem | inecmo3 38328* | Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | moeu2 38329 | Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024.) |
| ⊢ (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | ||
| Theorem | mopickr 38330 | "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 (pm2.21 123) and *14.26 (eupickbi 2629) from [WhiteheadRussell] p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024.) (Proof modification is discouraged.) |
| ⊢ ((∃*𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) | ||
| Theorem | moantr 38331 | Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018.) |
| ⊢ (∃*𝑥𝜓 → ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜓 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜒))) | ||
| Theorem | brabidgaw 38332* | The law of concretion for a binary relation. Special case of brabga 5481. Version of brabidga 38333 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by GG, 2-Apr-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝑥𝑅𝑦 ↔ 𝜑) | ||
| Theorem | brabidga 38333 | The law of concretion for a binary relation. Special case of brabga 5481. Usage of this theorem is discouraged because it depends on ax-13 2370, see brabidgaw 38332 for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018.) (New usage is discouraged.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝑥𝑅𝑦 ↔ 𝜑) | ||
| Theorem | inxp2 38334* | Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.) |
| ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} | ||
| Theorem | opabf 38335 | A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ | ||
| Theorem | ec0 38336 | The empty-coset of a class is the empty set. (Contributed by Peter Mazsa, 19-May-2019.) |
| ⊢ [𝐴]∅ = ∅ | ||
| Theorem | brcnvin 38337 | Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) | ||
| Definition | df-xrn 38338 | Define the range Cartesian product of two classes. Definition from [Holmes] p. 40. Membership in this class is characterized by xrnss3v 38339 and brxrn 38341. This is Scott Fenton's df-txp 35827 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35827. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | ||
| Theorem | xrnss3v 38339 | A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 35851 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35851. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | ||
| Theorem | xrnrel 38340 | A range Cartesian product is a relation. This is Scott Fenton's txprel 35852 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35852. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ Rel (𝐴 ⋉ 𝐵) | ||
| Theorem | brxrn 38341 | Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 38339, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐶))) | ||
| Theorem | brxrn2 38342* | A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | ||
| Theorem | dfxrn2 38343* | Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
| ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | brxrncnvep 38344 | The range product with converse epsilon relation. (Contributed by Peter Mazsa, 22-Jun-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ ◡ E )〈𝐵, 𝐶〉 ↔ (𝐶 ∈ 𝐴 ∧ 𝐴𝑅𝐵))) | ||
| Theorem | dmxrn 38345 | Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) | ||
| Theorem | dmcnvep 38346 | Domain of converse epsilon relation. (Contributed by Peter Mazsa, 30-Jan-2018.) (Revised by Peter Mazsa, 23-Nov-2025.) |
| ⊢ dom ◡ E = (V ∖ {∅}) | ||
| Theorem | dmxrncnvep 38347 | Domain of the range product with converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ dom (𝑅 ⋉ ◡ E ) = (dom 𝑅 ∖ {∅}) | ||
| Theorem | xrneq1 38348 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | ||
| Theorem | xrneq1i 38349 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶) | ||
| Theorem | xrneq1d 38350 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | ||
| Theorem | xrneq2 38351 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | ||
| Theorem | xrneq2i 38352 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵) | ||
| Theorem | xrneq2d 38353 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | ||
| Theorem | xrneq12 38354 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | ||
| Theorem | xrneq12i 38355 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) | ||
| Theorem | xrneq12d 38356 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | ||
| Theorem | elecxrn 38357* | Elementhood in the (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | ||
| Theorem | ecxrn 38358* | The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) | ||
| Theorem | disjressuc2 38359* | Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) | ||
| Theorem | disjecxrn 38360 | Two ways of saying that (𝑅 ⋉ 𝑆)-cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020.) (Revised by Peter Mazsa, 21-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅))) | ||
| Theorem | disjecxrncnvep 38361 | Two ways of saying that cosets are disjoint, special case of disjecxrn 38360. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) | ||
| Theorem | disjsuc2 38362* | Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
| Theorem | xrninxp 38363* | Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} | ||
| Theorem | xrninxp2 38364* | Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | ||
| Theorem | xrninxpex 38365 | Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) | ||
| Theorem | inxpxrn 38366 | Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.) |
| ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) | ||
| Theorem | br1cnvxrn2 38367* | The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | ||
| Theorem | elec1cnvxrn2 38368* | Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | ||
| Theorem | rnxrn 38369* | Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) |
| ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | rnxrnres 38370* | Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | rnxrncnvepres 38371* | Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} | ||
| Theorem | rnxrnidres 38372* | Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} | ||
| Theorem | xrnres 38373 | Two ways to express restriction of range Cartesian product, see also xrnres2 38374, xrnres3 38375. (Contributed by Peter Mazsa, 5-Jun-2021.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) | ||
| Theorem | xrnres2 38374 | Two ways to express restriction of range Cartesian product, see also xrnres 38373, xrnres3 38375. (Contributed by Peter Mazsa, 6-Sep-2021.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | ||
| Theorem | xrnres3 38375 | Two ways to express restriction of range Cartesian product, see also xrnres 38373, xrnres2 38374. (Contributed by Peter Mazsa, 28-Mar-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | ||
| Theorem | xrnres4 38376 | Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | ||
| Theorem | xrnresex 38377 | Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) | ||
| Theorem | xrnidresex 38378 | Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) | ||
| Theorem | xrncnvepresex 38379 | Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | dmxrncnvepres 38380 | Domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) = (dom (𝑅 ↾ 𝐴) ∖ {∅}) | ||
| Theorem | eldmxrncnvepres 38381 | Element of the domain of the range product with restricted converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) | ||
| Theorem | eldmxrncnvepres2 38382* | Element of the domain of the range product with restricted converse epsilon relation. This identifies the domain of the pet 38828 span (𝑅 ⋉ (' E | 𝐴)): a 𝐵 belongs to the domain of the span exactly when 𝐵 is in 𝐴 and has at least one 𝑥 ∈ 𝐵 and 𝑦 with 𝐵𝑅𝑦. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) | ||
| Theorem | eceldmqsxrncnvepres 38383 | An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ∧ [𝐵]𝑅 ≠ ∅))) | ||
| Theorem | eceldmqsxrncnvepres2 38384* | An (𝑅 ⋉ (' E | 𝐴))-coset in its domain quotient. In the pet 38828 span (𝑅 ⋉ (' E | 𝐴)), a block [ B ] lies in the domain quotient exactly when its representative 𝐵 belongs to 𝐴 and actually fires at least one arrow (has some 𝑥 ∈ 𝐵 and some 𝑦 with 𝐵𝑅𝑦). (Contributed by Peter Mazsa, 23-Nov-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑅 ∈ 𝑋) → ([𝐵](𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑥 𝑥 ∈ 𝐵 ∧ ∃𝑦 𝐵𝑅𝑦))) | ||
| Theorem | brin2 38385 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉)) | ||
| Theorem | brin3 38386 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆){{𝐵}})) | ||
| Definition | df-coss 38387* |
Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by
𝑅 iff there exists a set 𝑢 such
that both 𝑢𝑅𝑥 and
𝑢𝑅𝑦 hold, i.e., both 𝑥 and
𝑦
are are elements of the 𝑅
-coset of 𝑢 (see dfcoss2 38389 and the comment of dfec2 8635). 𝑅 is
usually a relation.
This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to ≀ 𝑅 (see e.g. pet 38828). Without the definition of ≀ 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38390) or to the range of a range Cartesian product of classes (cf. dfcoss4 38391), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38389. Technically, we can define it via composition (dfcoss3 38390) or as the range of a range Cartesian product (dfcoss4 38391), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38658, df-funALTV 38659) and disjoints (dfdisjs 38685, dfdisjs2 38686, df-disjALTV 38682, dfdisjALTV2 38691) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Definition | df-coels 38388 | Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 38406. Possible definitions are the special cases of dfcoss3 38390 and dfcoss4 38391. (Contributed by Peter Mazsa, 20-Nov-2019.) |
| ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | ||
| Theorem | dfcoss2 38389* | Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8635). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} | ||
| Theorem | dfcoss3 38390 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38387). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | ||
| Theorem | dfcoss4 38391 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38387). (Contributed by Peter Mazsa, 12-Jul-2021.) |
| ⊢ ≀ 𝑅 = ran (𝑅 ⋉ 𝑅) | ||
| Theorem | cosscnv 38392* | Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
| ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} | ||
| Theorem | coss1cnvres 38393* | Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} | ||
| Theorem | coss2cnvepres 38394* | Special case of coss1cnvres 38393. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} | ||
| Theorem | cossex 38395 | If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | ||
| Theorem | cosscnvex 38396 | If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) | ||
| Theorem | 1cosscnvepresex 38397 | Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | ||
| Theorem | 1cossxrncnvepresex 38398 | Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | relcoss 38399 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ Rel ≀ 𝑅 | ||
| Theorem | relcoels 38400 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ Rel ∼ 𝐴 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |