| Metamath
Proof Explorer Theorem List (p. 384 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cnvepima 38301 | The image of converse epsilon. (Contributed by Peter Mazsa, 22-Mar-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (◡ E “ 𝐴) = ∪ 𝐴) | ||
| Theorem | inex3 38302 | Sufficient condition for the intersection relation to be a set. (Contributed by Peter Mazsa, 24-Nov-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∨ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) | ||
| Theorem | inxpex 38303 | Sufficient condition for an intersection with a Cartesian product to be a set. (Contributed by Peter Mazsa, 10-May-2019.) |
| ⊢ ((𝑅 ∈ 𝑊 ∨ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑅 ∩ (𝐴 × 𝐵)) ∈ V) | ||
| Theorem | eqres 38304 | Converting a class constant definition by restriction (like df-ers 38627 or df-parts 38729) into a binary relation. (Contributed by Peter Mazsa, 1-Oct-2018.) |
| ⊢ 𝑅 = (𝑆 ↾ 𝐶) ⇒ ⊢ (𝐵 ∈ 𝑉 → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐴𝑆𝐵))) | ||
| Theorem | brrabga 38305* | The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐴, 𝐵〉𝑅𝐶 ↔ 𝜓)) | ||
| Theorem | brcnvrabga 38306* | The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.) |
| ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) & ⊢ 𝑅 = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅〈𝐵, 𝐶〉 ↔ 𝜓)) | ||
| Theorem | opideq 38307 | Equality conditions for ordered pairs 〈𝐴, 𝐴〉 and 〈𝐵, 𝐵〉. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.) |
| ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ 𝐴 = 𝐵)) | ||
| Theorem | iss2 38308 | A subclass of the identity relation is the intersection of identity relation with Cartesian product of the domain and range of the class. (Contributed by Peter Mazsa, 22-Jul-2019.) |
| ⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ∩ (dom 𝐴 × ran 𝐴))) | ||
| Theorem | eldmcnv 38309* | Elementhood in a domain of a converse. (Contributed by Peter Mazsa, 25-May-2018.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom ◡𝑅 ↔ ∃𝑢 𝑢𝑅𝐴)) | ||
| Theorem | dfrel5 38310 | Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 6-Nov-2018.) |
| ⊢ (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅) | ||
| Theorem | dfrel6 38311 | Alternate definition of the relation predicate. (Contributed by Peter Mazsa, 14-Mar-2019.) |
| ⊢ (Rel 𝑅 ↔ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) = 𝑅) | ||
| Theorem | cnvresrn 38312 | Converse restricted to range is converse. (Contributed by Peter Mazsa, 3-Sep-2021.) |
| ⊢ (◡𝑅 ↾ ran 𝑅) = ◡𝑅 | ||
| Theorem | relssinxpdmrn 38313 | Subset of restriction, special case. (Contributed by Peter Mazsa, 10-Apr-2023.) |
| ⊢ (Rel 𝑅 → (𝑅 ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) | ||
| Theorem | cnvref4 38314 | Two ways to say that a relation is a subclass. (Contributed by Peter Mazsa, 11-Apr-2023.) |
| ⊢ (Rel 𝑅 → ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑆 ∩ (dom 𝑅 × ran 𝑅)) ↔ 𝑅 ⊆ 𝑆)) | ||
| Theorem | cnvref5 38315* | Two ways to say that a relation is a subclass of the identity relation. (Contributed by Peter Mazsa, 26-Jun-2019.) |
| ⊢ (Rel 𝑅 → (𝑅 ⊆ I ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑥 = 𝑦))) | ||
| Theorem | ecin0 38316* | Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) | ||
| Theorem | ecinn0 38317* | Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have some elements in common. (Contributed by Peter Mazsa, 23-Jan-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) ≠ ∅ ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | ||
| Theorem | ineleq 38318* | Equivalence of restricted universal quantifications. (Contributed by Peter Mazsa, 29-May-2018.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥 = 𝑦 ∨ (𝐶 ∩ 𝐷) = ∅) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧∀𝑦 ∈ 𝐵 ((𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷) → 𝑥 = 𝑦)) | ||
| Theorem | inecmo 38319* | Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) |
| ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (Rel 𝑅 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ ([𝐵]𝑅 ∩ [𝐶]𝑅) = ∅) ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝐵𝑅𝑧)) | ||
| Theorem | inecmo2 38320* | Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 29-May-2018.) (Revised by Peter Mazsa, 2-Sep-2021.) |
| ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | ineccnvmo 38321* | Equivalence of a double restricted universal quantification and a restricted "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 2-Sep-2021.) |
| ⊢ (∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑦 = 𝑧 ∨ ([𝑦]◡𝐹 ∩ [𝑧]◡𝐹) = ∅) ↔ ∀𝑥∃*𝑦 ∈ 𝐵 𝑥𝐹𝑦) | ||
| Theorem | alrmomorn 38322 | Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021.) |
| ⊢ (∀𝑥∃*𝑦 ∈ ran 𝑅 𝑥𝑅𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑅𝑦) | ||
| Theorem | alrmomodm 38323* | Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ (Rel 𝑅 → (∀𝑥∃*𝑢 ∈ dom 𝑅 𝑢𝑅𝑥 ↔ ∀𝑥∃*𝑢 𝑢𝑅𝑥)) | ||
| Theorem | ineccnvmo2 38324* | Equivalence of a double universal quantification restricted to the range and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 4-Sep-2021.) |
| ⊢ (∀𝑥 ∈ ran 𝐹∀𝑦 ∈ ran 𝐹(𝑥 = 𝑦 ∨ ([𝑥]◡𝐹 ∩ [𝑦]◡𝐹) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝐹𝑥) | ||
| Theorem | inecmo3 38325* | Equivalence of a double universal quantification restricted to the domain and an "at most one" inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021.) |
| ⊢ ((∀𝑢 ∈ dom 𝑅∀𝑣 ∈ dom 𝑅(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ Rel 𝑅) ↔ (∀𝑥∃*𝑢 𝑢𝑅𝑥 ∧ Rel 𝑅)) | ||
| Theorem | moeu2 38326 | Uniqueness is equivalent to non-existence or unique existence. Alternate definition of the at-most-one quantifier, in terms of the existential quantifier and the unique existential quantifier. (Contributed by Peter Mazsa, 19-Nov-2024.) |
| ⊢ (∃*𝑥𝜑 ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | ||
| Theorem | mopickr 38327 | "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 (pm2.21 123) and *14.26 (eupickbi 2635) from [WhiteheadRussell] p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024.) (Proof modification is discouraged.) |
| ⊢ ((∃*𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜓 → 𝜑)) | ||
| Theorem | moantr 38328 | Sufficient condition for transitivity of conjunctions inside existential quantifiers. (Contributed by Peter Mazsa, 2-Oct-2018.) |
| ⊢ (∃*𝑥𝜓 → ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∃𝑥(𝜓 ∧ 𝜒)) → ∃𝑥(𝜑 ∧ 𝜒))) | ||
| Theorem | brabidgaw 38329* | The law of concretion for a binary relation. Special case of brabga 5509. Version of brabidga 38330 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Peter Mazsa, 24-Nov-2018.) (Revised by GG, 2-Apr-2024.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝑥𝑅𝑦 ↔ 𝜑) | ||
| Theorem | brabidga 38330 | The law of concretion for a binary relation. Special case of brabga 5509. Usage of this theorem is discouraged because it depends on ax-13 2376, see brabidgaw 38329 for a weaker version that does not require it. (Contributed by Peter Mazsa, 24-Nov-2018.) (New usage is discouraged.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝑥𝑅𝑦 ↔ 𝜑) | ||
| Theorem | inxp2 38331* | Intersection with a Cartesian product. (Contributed by Peter Mazsa, 18-Jul-2019.) |
| ⊢ (𝑅 ∩ (𝐴 × 𝐵)) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥𝑅𝑦)} | ||
| Theorem | opabf 38332 | A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.) (Proof shortened by Thierry Arnoux, 18-Feb-2022.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = ∅ | ||
| Theorem | ec0 38333 | The empty-coset of a class is the empty set. (Contributed by Peter Mazsa, 19-May-2019.) |
| ⊢ [𝐴]∅ = ∅ | ||
| Theorem | brcnvin 38334 | Intersection with a converse, binary relation. (Contributed by Peter Mazsa, 24-Mar-2024.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ ◡𝑆)𝐵 ↔ (𝐴𝑅𝐵 ∧ 𝐵𝑆𝐴))) | ||
| Definition | df-xrn 38335 | Define the range Cartesian product of two classes. Definition from [Holmes] p. 40. Membership in this class is characterized by xrnss3v 38336 and brxrn 38338. This is Scott Fenton's df-txp 35818 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35818. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V)) ∘ 𝐴) ∩ (◡(2nd ↾ (V × V)) ∘ 𝐵)) | ||
| Theorem | xrnss3v 38336 | A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v 35842 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35842. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ⋉ 𝐵) ⊆ (V × (V × V)) | ||
| Theorem | xrnrel 38337 | A range Cartesian product is a relation. This is Scott Fenton's txprel 35843 with a different symbol, see https://github.com/metamath/set.mm/issues/2469 35843. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ Rel (𝐴 ⋉ 𝐵) | ||
| Theorem | brxrn 38338 | Characterize a ternary relation over a range Cartesian product. Together with xrnss3v 38336, this characterizes elementhood in a range cross. (Contributed by Peter Mazsa, 27-Jun-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐶〉 ↔ (𝐴𝑅𝐵 ∧ 𝐴𝑆𝐶))) | ||
| Theorem | brxrn2 38339* | A characterization of the range Cartesian product. (Contributed by Peter Mazsa, 14-Oct-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | ||
| Theorem | dfxrn2 38340* | Alternate definition of the range Cartesian product. (Contributed by Peter Mazsa, 20-Feb-2022.) |
| ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑢〉 ∣ (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | xrneq1 38341 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | ||
| Theorem | xrneq1i 38342 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶) | ||
| Theorem | xrneq1d 38343 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐶)) | ||
| Theorem | xrneq2 38344 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | ||
| Theorem | xrneq2i 38345 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵) | ||
| Theorem | xrneq2d 38346 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 7-Sep-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⋉ 𝐴) = (𝐶 ⋉ 𝐵)) | ||
| Theorem | xrneq12 38347 | Equality theorem for the range Cartesian product. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | ||
| Theorem | xrneq12i 38348 | Equality theorem for the range Cartesian product, inference form. (Contributed by Peter Mazsa, 16-Dec-2020.) |
| ⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷) | ||
| Theorem | xrneq12d 38349 | Equality theorem for the range Cartesian product, deduction form. (Contributed by Peter Mazsa, 18-Dec-2021.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⋉ 𝐶) = (𝐵 ⋉ 𝐷)) | ||
| Theorem | elecxrn 38350* | Elementhood in the (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ [𝐴](𝑅 ⋉ 𝑆) ↔ ∃𝑥∃𝑦(𝐵 = 〈𝑥, 𝑦〉 ∧ 𝐴𝑅𝑥 ∧ 𝐴𝑆𝑦))) | ||
| Theorem | ecxrn 38351* | The (𝑅 ⋉ 𝑆)-coset of 𝐴. (Contributed by Peter Mazsa, 18-Apr-2020.) (Revised by Peter Mazsa, 21-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → [𝐴](𝑅 ⋉ 𝑆) = {〈𝑦, 𝑧〉 ∣ (𝐴𝑅𝑦 ∧ 𝐴𝑆𝑧)}) | ||
| Theorem | disjressuc2 38352* | Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]𝑅 ∩ [𝑣]𝑅) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) | ||
| Theorem | disjecxrn 38353 | Two ways of saying that (𝑅 ⋉ 𝑆)-cosets are disjoint. (Contributed by Peter Mazsa, 19-Jun-2020.) (Revised by Peter Mazsa, 21-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ 𝑆) ∩ [𝐵](𝑅 ⋉ 𝑆)) = ∅ ↔ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ∨ ([𝐴]𝑆 ∩ [𝐵]𝑆) = ∅))) | ||
| Theorem | disjecxrncnvep 38354 | Two ways of saying that cosets are disjoint, special case of disjecxrn 38353. (Contributed by Peter Mazsa, 12-Jul-2020.) (Revised by Peter Mazsa, 25-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴](𝑅 ⋉ ◡ E ) ∩ [𝐵](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝐴 ∩ 𝐵) = ∅ ∨ ([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅))) | ||
| Theorem | disjsuc2 38355* | Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
| ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) | ||
| Theorem | xrninxp 38356* | Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = ◡{〈〈𝑦, 𝑧〉, 𝑢〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)〈𝑦, 𝑧〉))} | ||
| Theorem | xrninxp2 38357* | Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 8-Apr-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {〈𝑢, 𝑥〉 ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢 ∈ 𝐴 ∧ 𝑢(𝑅 ⋉ 𝑆)𝑥))} | ||
| Theorem | xrninxpex 38358 | Sufficient condition for the intersection of a range Cartesian product with a Cartesian product to be a set. (Contributed by Peter Mazsa, 12-Apr-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) ∈ V) | ||
| Theorem | inxpxrn 38359 | Two ways to express the intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 10-Apr-2020.) |
| ⊢ ((𝑅 ∩ (𝐴 × 𝐵)) ⋉ (𝑆 ∩ (𝐴 × 𝐶))) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) | ||
| Theorem | br1cnvxrn2 38360* | The converse of a binary relation over a range Cartesian product. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐴◡(𝑅 ⋉ 𝑆)𝐵 ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | ||
| Theorem | elec1cnvxrn2 38361* | Elementhood in the converse range Cartesian product coset of 𝐴. (Contributed by Peter Mazsa, 11-Jul-2021.) |
| ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝐴]◡(𝑅 ⋉ 𝑆) ↔ ∃𝑦∃𝑧(𝐴 = 〈𝑦, 𝑧〉 ∧ 𝐵𝑅𝑦 ∧ 𝐵𝑆𝑧))) | ||
| Theorem | rnxrn 38362* | Range of the range Cartesian product of classes. (Contributed by Peter Mazsa, 1-Jun-2020.) |
| ⊢ ran (𝑅 ⋉ 𝑆) = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | rnxrnres 38363* | Range of a range Cartesian product with a restricted relation. (Contributed by Peter Mazsa, 5-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ (𝑆 ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑆𝑦)} | ||
| Theorem | rnxrncnvepres 38364* | Range of a range Cartesian product with a restriction of the converse epsilon relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ (◡ E ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ 𝑢 ∧ 𝑢𝑅𝑥)} | ||
| Theorem | rnxrnidres 38365* | Range of a range Cartesian product with a restriction of the identity relation. (Contributed by Peter Mazsa, 6-Dec-2021.) |
| ⊢ ran (𝑅 ⋉ ( I ↾ 𝐴)) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢 = 𝑦 ∧ 𝑢𝑅𝑥)} | ||
| Theorem | xrnres 38366 | Two ways to express restriction of range Cartesian product, see also xrnres2 38367, xrnres3 38368. (Contributed by Peter Mazsa, 5-Jun-2021.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ 𝑆) | ||
| Theorem | xrnres2 38367 | Two ways to express restriction of range Cartesian product, see also xrnres 38366, xrnres3 38368. (Contributed by Peter Mazsa, 6-Sep-2021.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = (𝑅 ⋉ (𝑆 ↾ 𝐴)) | ||
| Theorem | xrnres3 38368 | Two ways to express restriction of range Cartesian product, see also xrnres 38366, xrnres2 38367. (Contributed by Peter Mazsa, 28-Mar-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ↾ 𝐴) ⋉ (𝑆 ↾ 𝐴)) | ||
| Theorem | xrnres4 38369 | Two ways to express restriction of range Cartesian product. (Contributed by Peter Mazsa, 29-Dec-2020.) |
| ⊢ ((𝑅 ⋉ 𝑆) ↾ 𝐴) = ((𝑅 ⋉ 𝑆) ∩ (𝐴 × (ran (𝑅 ↾ 𝐴) × ran (𝑆 ↾ 𝐴)))) | ||
| Theorem | xrnresex 38370 | Sufficient condition for a restricted range Cartesian product to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 7-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ (𝑆 ↾ 𝐴) ∈ 𝑋) → (𝑅 ⋉ (𝑆 ↾ 𝐴)) ∈ V) | ||
| Theorem | xrnidresex 38371 | Sufficient condition for a range Cartesian product with restricted identity to be a set. (Contributed by Peter Mazsa, 31-Dec-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ ( I ↾ 𝐴)) ∈ V) | ||
| Theorem | xrncnvepresex 38372 | Sufficient condition for a range Cartesian product with restricted converse epsilon to be a set. (Contributed by Peter Mazsa, 16-Dec-2020.) (Revised by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | brin2 38373 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆)〈𝐵, 𝐵〉)) | ||
| Theorem | brin3 38374 | Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021.) (Avoid depending on this detail.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝑅 ∩ 𝑆)𝐵 ↔ 𝐴(𝑅 ⋉ 𝑆){{𝐵}})) | ||
| Definition | df-coss 38375* |
Define the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by
𝑅 iff there exists a set 𝑢 such
that both 𝑢𝑅𝑥 and
𝑢𝑅𝑦 hold, i.e., both 𝑥 and
𝑦
are are elements of the 𝑅
-coset of 𝑢 (see dfcoss2 38377 and the comment of dfec2 8720). 𝑅 is
usually a relation.
This concept simplifies theorems relating partition and equivalence: the left side of these theorems relate to 𝑅, the right side relate to ≀ 𝑅 (see e.g. pet 38815). Without the definition of ≀ 𝑅 we should have to relate the right side of these theorems to a composition of a converse (cf. dfcoss3 38378) or to the range of a range Cartesian product of classes (cf. dfcoss4 38379), which would make the theorems complicated and confusing. Alternate definition is dfcoss2 38377. Technically, we can define it via composition (dfcoss3 38378) or as the range of a range Cartesian product (dfcoss4 38379), but neither of these definitions reveal directly how the cosets by 𝑅 relate to each other. We define functions (df-funsALTV 38645, df-funALTV 38646) and disjoints (dfdisjs 38672, dfdisjs2 38673, df-disjALTV 38669, dfdisjALTV2 38678) with the help of it as well. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Definition | df-coels 38376 | Define the class of coelements on the class 𝐴, see also the alternate definition dfcoels 38394. Possible definitions are the special cases of dfcoss3 38378 and dfcoss4 38379. (Contributed by Peter Mazsa, 20-Nov-2019.) |
| ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) | ||
| Theorem | dfcoss2 38377* | Alternate definition of the class of cosets by 𝑅: 𝑥 and 𝑦 are cosets by 𝑅 iff there exists a set 𝑢 such that both 𝑥 and 𝑦 are are elements of the 𝑅-coset of 𝑢 (see also the comment of dfec2 8720). 𝑅 is usually a relation. (Contributed by Peter Mazsa, 16-Jan-2018.) |
| ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥 ∈ [𝑢]𝑅 ∧ 𝑦 ∈ [𝑢]𝑅)} | ||
| Theorem | dfcoss3 38378 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38375). (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ≀ 𝑅 = (𝑅 ∘ ◡𝑅) | ||
| Theorem | dfcoss4 38379 | Alternate definition of the class of cosets by 𝑅 (see the comment of df-coss 38375). (Contributed by Peter Mazsa, 12-Jul-2021.) |
| ⊢ ≀ 𝑅 = ran (𝑅 ⋉ 𝑅) | ||
| Theorem | cosscnv 38380* | Class of cosets by the converse of 𝑅 (Contributed by Peter Mazsa, 17-Jun-2020.) |
| ⊢ ≀ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑥𝑅𝑢 ∧ 𝑦𝑅𝑢)} | ||
| Theorem | coss1cnvres 38381* | Class of cosets by the converse of a restriction. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(𝑅 ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢𝑅𝑥 ∧ 𝑣𝑅𝑥))} | ||
| Theorem | coss2cnvepres 38382* | Special case of coss1cnvres 38381. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} | ||
| Theorem | cossex 38383 | If 𝐴 is a set then the class of cosets by 𝐴 is a set. (Contributed by Peter Mazsa, 4-Jan-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V) | ||
| Theorem | cosscnvex 38384 | If 𝐴 is a set then the class of cosets by the converse of 𝐴 is a set. (Contributed by Peter Mazsa, 18-Oct-2019.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ ◡𝐴 ∈ V) | ||
| Theorem | 1cosscnvepresex 38385 | Sufficient condition for a restricted converse epsilon coset to be a set. (Contributed by Peter Mazsa, 24-Sep-2021.) |
| ⊢ (𝐴 ∈ 𝑉 → ≀ (◡ E ↾ 𝐴) ∈ V) | ||
| Theorem | 1cossxrncnvepresex 38386 | Sufficient condition for a restricted converse epsilon range Cartesian product to be a set. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∈ V) | ||
| Theorem | relcoss 38387 | Cosets by 𝑅 is a relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ Rel ≀ 𝑅 | ||
| Theorem | relcoels 38388 | Coelements on 𝐴 is a relation. (Contributed by Peter Mazsa, 5-Oct-2021.) |
| ⊢ Rel ∼ 𝐴 | ||
| Theorem | cossss 38389 | Subclass theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 11-Nov-2019.) |
| ⊢ (𝐴 ⊆ 𝐵 → ≀ 𝐴 ⊆ ≀ 𝐵) | ||
| Theorem | cosseq 38390 | Equality theorem for the classes of cosets by 𝐴 and 𝐵. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ (𝐴 = 𝐵 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | cosseqi 38391 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, inference form. (Contributed by Peter Mazsa, 9-Jan-2018.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ ≀ 𝐴 = ≀ 𝐵 | ||
| Theorem | cosseqd 38392 | Equality theorem for the classes of cosets by 𝐴 and 𝐵, deduction form. (Contributed by Peter Mazsa, 4-Nov-2019.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ≀ 𝐴 = ≀ 𝐵) | ||
| Theorem | 1cossres 38393* | The class of cosets by a restriction. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ≀ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} | ||
| Theorem | dfcoels 38394* | Alternate definition of the class of coelements on the class 𝐴. (Contributed by Peter Mazsa, 20-Apr-2019.) |
| ⊢ ∼ 𝐴 = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | ||
| Theorem | brcoss 38395* | 𝐴 and 𝐵 are cosets by 𝑅: a binary relation. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) | ||
| Theorem | brcoss2 38396* | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅))) | ||
| Theorem | brcoss3 38397 | Alternate form of the 𝐴 and 𝐵 are cosets by 𝑅 binary relation. (Contributed by Peter Mazsa, 26-Mar-2019.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ ([𝐴]◡𝑅 ∩ [𝐵]◡𝑅) ≠ ∅)) | ||
| Theorem | brcosscnvcoss 38398 | For sets, the 𝐴 and 𝐵 cosets by 𝑅 binary relation and the 𝐵 and 𝐴 cosets by 𝑅 binary relation are the same. (Contributed by Peter Mazsa, 27-Dec-2018.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ 𝑅𝐵 ↔ 𝐵 ≀ 𝑅𝐴)) | ||
| Theorem | brcoels 38399* | 𝐵 and 𝐶 are coelements : a binary relation. (Contributed by Peter Mazsa, 14-Jan-2020.) (Revised by Peter Mazsa, 5-Oct-2021.) |
| ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ∼ 𝐴𝐶 ↔ ∃𝑢 ∈ 𝐴 (𝐵 ∈ 𝑢 ∧ 𝐶 ∈ 𝑢))) | ||
| Theorem | cocossss 38400* | Two ways of saying that cosets by cosets by 𝑅 is a subclass. (Contributed by Peter Mazsa, 17-Sep-2021.) |
| ⊢ ( ≀ ≀ 𝑅 ⊆ 𝑆 ↔ ∀𝑥∀𝑦∀𝑧((𝑥 ≀ 𝑅𝑦 ∧ 𝑦 ≀ 𝑅𝑧) → 𝑥𝑆𝑧)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |