![]() |
Metamath
Proof Explorer Theorem List (p. 384 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30158) |
![]() (30159-31681) |
![]() (31682-47805) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cvrat3 38301 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (atcvat3i 31636 analog.) (Contributed by NM, 30-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΄ β§ π β π΄)) β ((π β π β§ Β¬ π β€ π β§ π β€ (π β¨ π)) β (π β§ (π β¨ π)) β π΄)) | ||
Theorem | cvrat4 38302* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 31637 analog.) (Contributed by NM, 30-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΄ β§ π β π΄)) β ((π β 0 β§ π β€ (π β¨ π)) β βπ β π΄ (π β€ π β§ π β€ (π β¨ π)))) | ||
Theorem | cvrat42 38303* | Commuted version of cvrat4 38302. (Contributed by NM, 28-Jan-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΄ β§ π β π΄)) β ((π β 0 β§ π β€ (π β¨ π)) β βπ β π΄ (π β€ π β§ π β€ (π β¨ π)))) | ||
Theorem | 2atjm 38304 | The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β€ π β§ Β¬ π β€ π)) β ((π β¨ π) β§ π) = π) | ||
Theorem | atbtwn 38305 | Property of a 3rd atom π on a line π β¨ π intersecting element π at π. (Contributed by NM, 30-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΅) β§ (π β€ π β§ Β¬ π β€ π β§ π β€ (π β¨ π))) β (π β π β Β¬ π β€ π)) | ||
Theorem | atbtwnexOLDN 38306* | There exists a 3rd atom π on a line π β¨ π intersecting element π at π, such that π is different from π and not in π. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΅ β§ π β€ π β§ Β¬ π β€ π)) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ π β€ (π β¨ π))) | ||
Theorem | atbtwnex 38307* | Given atoms π in π and π not in π, there exists an atom π not in π such that the line π β¨ π intersects π at π. (Contributed by NM, 1-Aug-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΅ β§ π β€ π β§ Β¬ π β€ π)) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ π β€ (π β¨ π))) | ||
Theorem | 3noncolr2 38308 | Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π ))) | ||
Theorem | 3noncolr1N 38309 | Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π))) | ||
Theorem | hlatcon3 38310 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π )) | ||
Theorem | hlatcon2 38311 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) | ||
Theorem | 4noncolr3 38312 | A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π))) | ||
Theorem | 4noncolr2 38313 | A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 4noncolr1 38314 | A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | athgt 38315* | A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β HL β βπ β π΄ βπ β π΄ (ππΆ(π β¨ π) β§ βπ β π΄ ((π β¨ π)πΆ((π β¨ π) β¨ π) β§ βπ β π΄ ((π β¨ π) β¨ π)πΆ(((π β¨ π) β¨ π) β¨ π )))) | ||
Theorem | 3dim0 38316* | There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β HL β βπ β π΄ βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dimlem1 38317 | Lemma for 3dim1 38326. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((π β π β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β§ π = π) β (π β π β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π))) | ||
Theorem | 3dimlem2 38318 | Lemma for 3dim1 38326. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β§ (π β π β§ π β€ (π β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dimlem3a 38319 | Lemma for 3dim3 38328. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (Β¬ π β€ ((π β¨ π ) β¨ π) β§ Β¬ π β€ (π β¨ π ) β§ π β€ ((π β¨ π ) β¨ π))) β Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | 3dimlem3 38320 | Lemma for 3dim1 38326. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π ) β§ π β€ ((π β¨ π ) β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dimlem3OLDN 38321 | Lemma for 3dim1 38326. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π ) β§ π β€ ((π β¨ π ) β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dimlem4a 38322 | Lemma for 3dim3 38328. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π))) β Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | 3dimlem4 38323 | Lemma for 3dim1 38326. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β§ (π β π β§ Β¬ π β€ (π β¨ π )) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dimlem4OLDN 38324 | Lemma for 3dim1 38326. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β§ (π β π β§ Β¬ π β€ (π β¨ π )) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dim1lem5 38325* | Lemma for 3dim1 38326. (Contributed by NM, 26-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((π’ β π΄ β§ π£ β π΄ β§ π€ β π΄) β§ (π β π’ β§ Β¬ π£ β€ (π β¨ π’) β§ Β¬ π€ β€ ((π β¨ π’) β¨ π£))) β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dim1 38326* | Construct a 3-dimensional volume (height-4 element) on top of a given atom π. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄) β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dim2 38327* | Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β βπ β π΄ βπ β π΄ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dim3 38328* | Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β βπ β π΄ Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | 2dim 38329* | Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄) β βπ β π΄ βπ β π΄ (ππΆ(π β¨ π) β§ (π β¨ π)πΆ((π β¨ π) β¨ π))) | ||
Theorem | 1dimN 38330* | An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄) β βπ β π΄ ππΆ(π β¨ π)) | ||
Theorem | 1cvrco 38331 | The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ βπ) β π΄)) | ||
Theorem | 1cvratex 38332* | There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΅ β§ ππΆ 1 ) β βπ β π΄ π < π) | ||
Theorem | 1cvratlt 38333 | An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΅) β§ (ππΆ 1 β§ π β€ π)) β π < π) | ||
Theorem | 1cvrjat 38334 | An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΄) β§ (ππΆ 1 β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) | ||
Theorem | 1cvrat 38335 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β π β§ ππΆ 1 β§ Β¬ π β€ π)) β ((π β¨ π) β§ π) β π΄) | ||
Theorem | ps-1 38336 | The join of two atoms π β¨ π (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | ps-2 38337* | Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((Β¬ π β€ (π β¨ π ) β§ π β π) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π )))) β βπ’ β π΄ (π’ β€ (π β¨ π ) β§ π’ β€ (π β¨ π))) | ||
Theorem | 2atjlej 38338 | Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β€ (π β¨ π))) β π β π) | ||
Theorem | hlatexch3N 38339 | Rearrange join of atoms in an equality. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ (π β¨ π) = (π β¨ π ))) β (π β¨ π) = (π β¨ π )) | ||
Theorem | hlatexch4 38340 | Exchange 2 atoms. (Contributed by NM, 13-May-2013.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ π β π β§ (π β¨ π) = (π β¨ π))) β (π β¨ π ) = (π β¨ π)) | ||
Theorem | ps-2b 38341 | Variation of projective geometry axiom ps-2 38337. (Contributed by NM, 3-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (Β¬ π β€ (π β¨ π ) β§ π β π β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π )))) β ((π β¨ π ) β§ (π β¨ π)) β 0 ) | ||
Theorem | 3atlem1 38342 | Lemma for 3at 38349. (Contributed by NM, 22-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem2 38343 | Lemma for 3at 38349. (Contributed by NM, 22-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ (π β π β§ π β€ (π β¨ π)) β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem3 38344 | Lemma for 3at 38349. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem4 38345 | Lemma for 3at 38349. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π )) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π )) | ||
Theorem | 3atlem5 38346 | Lemma for 3at 38349. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem6 38347 | Lemma for 3at 38349. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π β§ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem7 38348 | Lemma for 3at 38349. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3at 38349 | Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 38336 for lines and 4at 38472 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π)) β (((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π))) | ||
Syntax | clln 38350 | Extend class notation with set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice. |
class LLines | ||
Syntax | clpl 38351 | Extend class notation with set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice. |
class LPlanes | ||
Syntax | clvol 38352 | Extend class notation with set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice. |
class LVols | ||
Syntax | clines 38353 | Extend class notation with set of all projective lines for a Hilbert lattice. |
class Lines | ||
Syntax | cpointsN 38354 | Extend class notation with set of all projective points. |
class Points | ||
Syntax | cpsubsp 38355 | Extend class notation with set of all projective subspaces. |
class PSubSp | ||
Syntax | cpmap 38356 | Extend class notation with projective map. |
class pmap | ||
Definition | df-llines 38357* | Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice π, in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012.) |
β’ LLines = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (Atomsβπ)π( β βπ)π₯}) | ||
Definition | df-lplanes 38358* | Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice π, in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012.) |
β’ LPlanes = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LLinesβπ)π( β βπ)π₯}) | ||
Definition | df-lvols 38359* | Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice π, in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012.) |
β’ LVols = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LPlanesβπ)π( β βπ)π₯}) | ||
Definition | df-lines 38360* | Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of [Holland95] p. 222. (Contributed by NM, 19-Sep-2011.) |
β’ Lines = (π β V β¦ {π β£ βπ β (Atomsβπ)βπ β (Atomsβπ)(π β π β§ π = {π β (Atomsβπ) β£ π(leβπ)(π(joinβπ)π)})}) | ||
Definition | df-pointsN 38361* | Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of [MaedaMaeda] p. 61. Note that item 1 in [Holland95] p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011.) |
β’ Points = (π β V β¦ {π β£ βπ β (Atomsβπ)π = {π}}) | ||
Definition | df-psubsp 38362* | Define set of all projective subspaces. Based on definition of subspace in [Holland95] p. 212. (Contributed by NM, 2-Oct-2011.) |
β’ PSubSp = (π β V β¦ {π β£ (π β (Atomsβπ) β§ βπ β π βπ β π βπ β (Atomsβπ)(π(leβπ)(π(joinβπ)π) β π β π ))}) | ||
Definition | df-pmap 38363* | Define projective map for π at π. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
β’ pmap = (π β V β¦ (π β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π})) | ||
Theorem | llnset 38364* | The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (πΎ β π· β π = {π₯ β π΅ β£ βπ β π΄ ππΆπ₯}) | ||
Theorem | islln 38365* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) | ||
Theorem | islln4 38366* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β π· β§ π β π΅) β (π β π β βπ β π΄ ππΆπ)) | ||
Theorem | llni 38367 | Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β π β π) | ||
Theorem | llnbase 38368 | A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π = (LLinesβπΎ) β β’ (π β π β π β π΅) | ||
Theorem | islln3 38369* | The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ β π΄ βπ β π΄ (π β π β§ π = (π β¨ π)))) | ||
Theorem | islln2 38370* | The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (πΎ β HL β (π β π β (π β π΅ β§ βπ β π΄ βπ β π΄ (π β π β§ π = (π β¨ π))))) | ||
Theorem | llni2 38371 | The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β π) | ||
Theorem | llnnleat 38372 | An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π΄) β Β¬ π β€ π) | ||
Theorem | llnneat 38373 | A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π΄) | ||
Theorem | 2atneat 38374 | The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π)) β Β¬ (π β¨ π) β π΄) | ||
Theorem | llnn0 38375 | A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.) |
β’ 0 = (0.βπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π) β π β 0 ) | ||
Theorem | islln2a 38376 | The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) | ||
Theorem | llnle 38377* | Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΅) β§ (π β 0 β§ Β¬ π β π΄)) β βπ¦ β π π¦ β€ π) | ||
Theorem | atcvrlln2 38378 | An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π) β§ π β€ π) β ππΆπ) | ||
Theorem | atcvrlln 38379 | An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ ππΆπ) β (π β π΄ β π β π)) | ||
Theorem | llnexatN 38380* | Given an atom on a line, there is another atom whose join equals the line. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ π β€ π) β βπ β π΄ (π β π β§ π = (π β¨ π))) | ||
Theorem | llncmp 38381 | If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β (π β€ π β π = π)) | ||
Theorem | llnnlt 38382 | Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.) |
β’ < = (ltβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π < π) | ||
Theorem | 2llnmat 38383 | Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.) |
β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β π β§ (π β§ π) β 0 )) β (π β§ π) β π΄) | ||
Theorem | 2at0mat0 38384 | Special case of 2atmat0 38385 where one atom could be zero. (Contributed by NM, 30-May-2013.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ (π β π΄ β¨ π = 0 ) β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) | ||
Theorem | 2atmat0 38385 | The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) | ||
Theorem | 2atm 38386 | An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π) β§ (π β¨ π) β (π β¨ π))) β π = ((π β¨ π) β§ (π β¨ π))) | ||
Theorem | ps-2c 38387 | Variation of projective geometry axiom ps-2 38337. (Contributed by NM, 3-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ ((Β¬ π β€ (π β¨ π ) β§ π β π) β§ (π β¨ π ) β (π β¨ π) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π )))) β ((π β¨ π ) β§ (π β¨ π)) β π΄) | ||
Theorem | lplnset 38388* | The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β π΄ β π = {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯}) | ||
Theorem | islpln 38389* | The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) | ||
Theorem | islpln4 38390* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β π΄ β§ π β π΅) β (π β π β βπ¦ β π π¦πΆπ)) | ||
Theorem | lplni 38391 | Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) | ||
Theorem | islpln3 38392* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ π = (π¦ β¨ π)))) | ||
Theorem | lplnbase 38393 | A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π = (LPlanesβπΎ) β β’ (π β π β π β π΅) | ||
Theorem | islpln5 38394* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π)))) | ||
Theorem | islpln2 38395* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β HL β (π β π β (π β π΅ β§ βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π))))) | ||
Theorem | lplni2 38396 | The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β ((π β¨ π ) β¨ π) β π) | ||
Theorem | lvolex3N 38397* | There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π) β βπ β π΄ Β¬ π β€ π) | ||
Theorem | llnmlplnN 38398 | The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (Β¬ π β€ π β§ (π β§ π) β 0 )) β (π β§ π) β π΄) | ||
Theorem | lplnle 38399* | Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π΅) β§ (π β 0 β§ Β¬ π β π΄ β§ Β¬ π β π)) β βπ¦ β π π¦ β€ π) | ||
Theorem | lplnnle2at 38400 | A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π΄ β§ π β π΄)) β Β¬ π β€ (π β¨ π )) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |