| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elex 3501 | . 2
⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) | 
| 2 |  | cmtfval.c | . . 3
⊢ 𝐶 = (cm‘𝐾) | 
| 3 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) | 
| 4 |  | cmtfval.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) | 
| 5 | 3, 4 | eqtr4di 2795 | . . . . . . 7
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) | 
| 6 | 5 | eleq2d 2827 | . . . . . 6
⊢ (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥 ∈ 𝐵)) | 
| 7 | 5 | eleq2d 2827 | . . . . . 6
⊢ (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦 ∈ 𝐵)) | 
| 8 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾)) | 
| 9 |  | cmtfval.j | . . . . . . . . 9
⊢  ∨ =
(join‘𝐾) | 
| 10 | 8, 9 | eqtr4di 2795 | . . . . . . . 8
⊢ (𝑝 = 𝐾 → (join‘𝑝) = ∨ ) | 
| 11 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾)) | 
| 12 |  | cmtfval.m | . . . . . . . . . 10
⊢  ∧ =
(meet‘𝐾) | 
| 13 | 11, 12 | eqtr4di 2795 | . . . . . . . . 9
⊢ (𝑝 = 𝐾 → (meet‘𝑝) = ∧ ) | 
| 14 | 13 | oveqd 7448 | . . . . . . . 8
⊢ (𝑝 = 𝐾 → (𝑥(meet‘𝑝)𝑦) = (𝑥 ∧ 𝑦)) | 
| 15 |  | eqidd 2738 | . . . . . . . . 9
⊢ (𝑝 = 𝐾 → 𝑥 = 𝑥) | 
| 16 |  | fveq2 6906 | . . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾)) | 
| 17 |  | cmtfval.o | . . . . . . . . . . 11
⊢  ⊥ =
(oc‘𝐾) | 
| 18 | 16, 17 | eqtr4di 2795 | . . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (oc‘𝑝) = ⊥ ) | 
| 19 | 18 | fveq1d 6908 | . . . . . . . . 9
⊢ (𝑝 = 𝐾 → ((oc‘𝑝)‘𝑦) = ( ⊥ ‘𝑦)) | 
| 20 | 13, 15, 19 | oveq123d 7452 | . . . . . . . 8
⊢ (𝑝 = 𝐾 → (𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)) = (𝑥 ∧ ( ⊥ ‘𝑦))) | 
| 21 | 10, 14, 20 | oveq123d 7452 | . . . . . . 7
⊢ (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))) | 
| 22 | 21 | eqeq2d 2748 | . . . . . 6
⊢ (𝑝 = 𝐾 → (𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) ↔ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))) | 
| 23 | 6, 7, 22 | 3anbi123d 1438 | . . . . 5
⊢ (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)))) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))))) | 
| 24 | 23 | opabbidv 5209 | . . . 4
⊢ (𝑝 = 𝐾 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) | 
| 25 |  | df-cmtN 39178 | . . . 4
⊢ cm =
(𝑝 ∈ V ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) | 
| 26 |  | df-3an 1089 | . . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))) | 
| 27 | 26 | opabbii 5210 | . . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} | 
| 28 | 4 | fvexi 6920 | . . . . . . 7
⊢ 𝐵 ∈ V | 
| 29 | 28, 28 | xpex 7773 | . . . . . 6
⊢ (𝐵 × 𝐵) ∈ V | 
| 30 |  | opabssxp 5778 | . . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ⊆ (𝐵 × 𝐵) | 
| 31 | 29, 30 | ssexi 5322 | . . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ∈ V | 
| 32 | 27, 31 | eqeltri 2837 | . . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ∈ V | 
| 33 | 24, 25, 32 | fvmpt 7016 | . . 3
⊢ (𝐾 ∈ V → (cm‘𝐾) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) | 
| 34 | 2, 33 | eqtrid 2789 | . 2
⊢ (𝐾 ∈ V → 𝐶 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) | 
| 35 | 1, 34 | syl 17 | 1
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |