Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtfvalN Structured version   Visualization version   GIF version

Theorem cmtfvalN 37675
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐡 = (Baseβ€˜πΎ)
cmtfval.j ∨ = (joinβ€˜πΎ)
cmtfval.m ∧ = (meetβ€˜πΎ)
cmtfval.o βŠ₯ = (ocβ€˜πΎ)
cmtfval.c 𝐢 = (cmβ€˜πΎ)
Assertion
Ref Expression
cmtfvalN (𝐾 ∈ 𝐴 β†’ 𝐢 = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))})
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐾,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝐢(π‘₯,𝑦)   ∨ (π‘₯,𝑦)   ∧ (π‘₯,𝑦)   βŠ₯ (π‘₯,𝑦)

Proof of Theorem cmtfvalN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3464 . 2 (𝐾 ∈ 𝐴 β†’ 𝐾 ∈ V)
2 cmtfval.c . . 3 𝐢 = (cmβ€˜πΎ)
3 fveq2 6843 . . . . . . . 8 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = (Baseβ€˜πΎ))
4 cmtfval.b . . . . . . . 8 𝐡 = (Baseβ€˜πΎ)
53, 4eqtr4di 2795 . . . . . . 7 (𝑝 = 𝐾 β†’ (Baseβ€˜π‘) = 𝐡)
65eleq2d 2824 . . . . . 6 (𝑝 = 𝐾 β†’ (π‘₯ ∈ (Baseβ€˜π‘) ↔ π‘₯ ∈ 𝐡))
75eleq2d 2824 . . . . . 6 (𝑝 = 𝐾 β†’ (𝑦 ∈ (Baseβ€˜π‘) ↔ 𝑦 ∈ 𝐡))
8 fveq2 6843 . . . . . . . . 9 (𝑝 = 𝐾 β†’ (joinβ€˜π‘) = (joinβ€˜πΎ))
9 cmtfval.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
108, 9eqtr4di 2795 . . . . . . . 8 (𝑝 = 𝐾 β†’ (joinβ€˜π‘) = ∨ )
11 fveq2 6843 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (meetβ€˜π‘) = (meetβ€˜πΎ))
12 cmtfval.m . . . . . . . . . 10 ∧ = (meetβ€˜πΎ)
1311, 12eqtr4di 2795 . . . . . . . . 9 (𝑝 = 𝐾 β†’ (meetβ€˜π‘) = ∧ )
1413oveqd 7375 . . . . . . . 8 (𝑝 = 𝐾 β†’ (π‘₯(meetβ€˜π‘)𝑦) = (π‘₯ ∧ 𝑦))
15 eqidd 2738 . . . . . . . . 9 (𝑝 = 𝐾 β†’ π‘₯ = π‘₯)
16 fveq2 6843 . . . . . . . . . . 11 (𝑝 = 𝐾 β†’ (ocβ€˜π‘) = (ocβ€˜πΎ))
17 cmtfval.o . . . . . . . . . . 11 βŠ₯ = (ocβ€˜πΎ)
1816, 17eqtr4di 2795 . . . . . . . . . 10 (𝑝 = 𝐾 β†’ (ocβ€˜π‘) = βŠ₯ )
1918fveq1d 6845 . . . . . . . . 9 (𝑝 = 𝐾 β†’ ((ocβ€˜π‘)β€˜π‘¦) = ( βŠ₯ β€˜π‘¦))
2013, 15, 19oveq123d 7379 . . . . . . . 8 (𝑝 = 𝐾 β†’ (π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦)) = (π‘₯ ∧ ( βŠ₯ β€˜π‘¦)))
2110, 14, 20oveq123d 7379 . . . . . . 7 (𝑝 = 𝐾 β†’ ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))) = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))
2221eqeq2d 2748 . . . . . 6 (𝑝 = 𝐾 β†’ (π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))) ↔ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦)))))
236, 7, 223anbi123d 1437 . . . . 5 (𝑝 = 𝐾 β†’ ((π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦)))) ↔ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))))
2423opabbidv 5172 . . . 4 (𝑝 = 𝐾 β†’ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))} = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))})
25 df-cmtN 37642 . . . 4 cm = (𝑝 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (Baseβ€˜π‘) ∧ 𝑦 ∈ (Baseβ€˜π‘) ∧ π‘₯ = ((π‘₯(meetβ€˜π‘)𝑦)(joinβ€˜π‘)(π‘₯(meetβ€˜π‘)((ocβ€˜π‘)β€˜π‘¦))))})
26 df-3an 1090 . . . . . 6 ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦)))) ↔ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦)))))
2726opabbii 5173 . . . . 5 {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))} = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))}
284fvexi 6857 . . . . . . 7 𝐡 ∈ V
2928, 28xpex 7688 . . . . . 6 (𝐡 Γ— 𝐡) ∈ V
30 opabssxp 5725 . . . . . 6 {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))} βŠ† (𝐡 Γ— 𝐡)
3129, 30ssexi 5280 . . . . 5 {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡) ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))} ∈ V
3227, 31eqeltri 2834 . . . 4 {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))} ∈ V
3324, 25, 32fvmpt 6949 . . 3 (𝐾 ∈ V β†’ (cmβ€˜πΎ) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))})
342, 33eqtrid 2789 . 2 (𝐾 ∈ V β†’ 𝐢 = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))})
351, 34syl 17 1 (𝐾 ∈ 𝐴 β†’ 𝐢 = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ π‘₯ = ((π‘₯ ∧ 𝑦) ∨ (π‘₯ ∧ ( βŠ₯ β€˜π‘¦))))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  Vcvv 3446  {copab 5168   Γ— cxp 5632  β€˜cfv 6497  (class class class)co 7358  Basecbs 17084  occoc 17142  joincjn 18201  meetcmee 18202  cmccmtN 37638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-cmtN 37642
This theorem is referenced by:  cmtvalN  37676
  Copyright terms: Public domain W3C validator