Step | Hyp | Ref
| Expression |
1 | | elex 3450 |
. 2
⊢ (𝐾 ∈ 𝐴 → 𝐾 ∈ V) |
2 | | cmtfval.c |
. . 3
⊢ 𝐶 = (cm‘𝐾) |
3 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾)) |
4 | | cmtfval.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
5 | 3, 4 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵) |
6 | 5 | eleq2d 2824 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥 ∈ 𝐵)) |
7 | 5 | eleq2d 2824 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦 ∈ 𝐵)) |
8 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾)) |
9 | | cmtfval.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
10 | 8, 9 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (join‘𝑝) = ∨ ) |
11 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾)) |
12 | | cmtfval.m |
. . . . . . . . . 10
⊢ ∧ =
(meet‘𝐾) |
13 | 11, 12 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → (meet‘𝑝) = ∧ ) |
14 | 13 | oveqd 7292 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (𝑥(meet‘𝑝)𝑦) = (𝑥 ∧ 𝑦)) |
15 | | eqidd 2739 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → 𝑥 = 𝑥) |
16 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾)) |
17 | | cmtfval.o |
. . . . . . . . . . 11
⊢ ⊥ =
(oc‘𝐾) |
18 | 16, 17 | eqtr4di 2796 |
. . . . . . . . . 10
⊢ (𝑝 = 𝐾 → (oc‘𝑝) = ⊥ ) |
19 | 18 | fveq1d 6776 |
. . . . . . . . 9
⊢ (𝑝 = 𝐾 → ((oc‘𝑝)‘𝑦) = ( ⊥ ‘𝑦)) |
20 | 13, 15, 19 | oveq123d 7296 |
. . . . . . . 8
⊢ (𝑝 = 𝐾 → (𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)) = (𝑥 ∧ ( ⊥ ‘𝑦))) |
21 | 10, 14, 20 | oveq123d 7296 |
. . . . . . 7
⊢ (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))) |
22 | 21 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑝 = 𝐾 → (𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) ↔ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))) |
23 | 6, 7, 22 | 3anbi123d 1435 |
. . . . 5
⊢ (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)))) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))))) |
24 | 23 | opabbidv 5140 |
. . . 4
⊢ (𝑝 = 𝐾 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |
25 | | df-cmtN 37191 |
. . . 4
⊢ cm =
(𝑝 ∈ V ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) |
26 | | df-3an 1088 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦)))) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))) |
27 | 26 | opabbii 5141 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} |
28 | 4 | fvexi 6788 |
. . . . . . 7
⊢ 𝐵 ∈ V |
29 | 28, 28 | xpex 7603 |
. . . . . 6
⊢ (𝐵 × 𝐵) ∈ V |
30 | | opabssxp 5679 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ⊆ (𝐵 × 𝐵) |
31 | 29, 30 | ssexi 5246 |
. . . . 5
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ∈ V |
32 | 27, 31 | eqeltri 2835 |
. . . 4
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))} ∈ V |
33 | 24, 25, 32 | fvmpt 6875 |
. . 3
⊢ (𝐾 ∈ V → (cm‘𝐾) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |
34 | 2, 33 | eqtrid 2790 |
. 2
⊢ (𝐾 ∈ V → 𝐶 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |
35 | 1, 34 | syl 17 |
1
⊢ (𝐾 ∈ 𝐴 → 𝐶 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ( ⊥ ‘𝑦))))}) |