Detailed syntax breakdown of Definition df-cnf
| Step | Hyp | Ref
| Expression |
| 1 | | ccnf 9701 |
. 2
class
CNF |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | con0 6384 |
. . 3
class
On |
| 5 | | vf |
. . . 4
setvar 𝑓 |
| 6 | | vg |
. . . . . . 7
setvar 𝑔 |
| 7 | 6 | cv 1539 |
. . . . . 6
class 𝑔 |
| 8 | | c0 4333 |
. . . . . 6
class
∅ |
| 9 | | cfsupp 9401 |
. . . . . 6
class
finSupp |
| 10 | 7, 8, 9 | wbr 5143 |
. . . . 5
wff 𝑔 finSupp
∅ |
| 11 | 2 | cv 1539 |
. . . . . 6
class 𝑥 |
| 12 | 3 | cv 1539 |
. . . . . 6
class 𝑦 |
| 13 | | cmap 8866 |
. . . . . 6
class
↑m |
| 14 | 11, 12, 13 | co 7431 |
. . . . 5
class (𝑥 ↑m 𝑦) |
| 15 | 10, 6, 14 | crab 3436 |
. . . 4
class {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} |
| 16 | | vh |
. . . . 5
setvar ℎ |
| 17 | 5 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 18 | | csupp 8185 |
. . . . . . 7
class
supp |
| 19 | 17, 8, 18 | co 7431 |
. . . . . 6
class (𝑓 supp ∅) |
| 20 | | cep 5583 |
. . . . . 6
class
E |
| 21 | 19, 20 | coi 9549 |
. . . . 5
class OrdIso( E
, (𝑓 supp
∅)) |
| 22 | 16 | cv 1539 |
. . . . . . 7
class ℎ |
| 23 | 22 | cdm 5685 |
. . . . . 6
class dom ℎ |
| 24 | | vk |
. . . . . . . 8
setvar 𝑘 |
| 25 | | vz |
. . . . . . . 8
setvar 𝑧 |
| 26 | | cvv 3480 |
. . . . . . . 8
class
V |
| 27 | 24 | cv 1539 |
. . . . . . . . . . . 12
class 𝑘 |
| 28 | 27, 22 | cfv 6561 |
. . . . . . . . . . 11
class (ℎ‘𝑘) |
| 29 | | coe 8505 |
. . . . . . . . . . 11
class
↑o |
| 30 | 11, 28, 29 | co 7431 |
. . . . . . . . . 10
class (𝑥 ↑o (ℎ‘𝑘)) |
| 31 | 28, 17 | cfv 6561 |
. . . . . . . . . 10
class (𝑓‘(ℎ‘𝑘)) |
| 32 | | comu 8504 |
. . . . . . . . . 10
class
·o |
| 33 | 30, 31, 32 | co 7431 |
. . . . . . . . 9
class ((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) |
| 34 | 25 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 35 | | coa 8503 |
. . . . . . . . 9
class
+o |
| 36 | 33, 34, 35 | co 7431 |
. . . . . . . 8
class (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧) |
| 37 | 24, 25, 26, 26, 36 | cmpo 7433 |
. . . . . . 7
class (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) |
| 38 | 37, 8 | cseqom 8487 |
. . . . . 6
class
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) |
| 39 | 23, 38 | cfv 6561 |
. . . . 5
class
(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) |
| 40 | 16, 21, 39 | csb 3899 |
. . . 4
class
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) |
| 41 | 5, 15, 40 | cmpt 5225 |
. . 3
class (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) |
| 42 | 2, 3, 4, 4, 41 | cmpo 7433 |
. 2
class (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| 43 | 1, 42 | wceq 1540 |
1
wff CNF =
(𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |