Detailed syntax breakdown of Definition df-cnf
Step | Hyp | Ref
| Expression |
1 | | ccnf 9419 |
. 2
class
CNF |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | con0 6266 |
. . 3
class
On |
5 | | vf |
. . . 4
setvar 𝑓 |
6 | | vg |
. . . . . . 7
setvar 𝑔 |
7 | 6 | cv 1538 |
. . . . . 6
class 𝑔 |
8 | | c0 4256 |
. . . . . 6
class
∅ |
9 | | cfsupp 9128 |
. . . . . 6
class
finSupp |
10 | 7, 8, 9 | wbr 5074 |
. . . . 5
wff 𝑔 finSupp
∅ |
11 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
12 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
13 | | cmap 8615 |
. . . . . 6
class
↑m |
14 | 11, 12, 13 | co 7275 |
. . . . 5
class (𝑥 ↑m 𝑦) |
15 | 10, 6, 14 | crab 3068 |
. . . 4
class {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} |
16 | | vh |
. . . . 5
setvar ℎ |
17 | 5 | cv 1538 |
. . . . . . 7
class 𝑓 |
18 | | csupp 7977 |
. . . . . . 7
class
supp |
19 | 17, 8, 18 | co 7275 |
. . . . . 6
class (𝑓 supp ∅) |
20 | | cep 5494 |
. . . . . 6
class
E |
21 | 19, 20 | coi 9268 |
. . . . 5
class OrdIso( E
, (𝑓 supp
∅)) |
22 | 16 | cv 1538 |
. . . . . . 7
class ℎ |
23 | 22 | cdm 5589 |
. . . . . 6
class dom ℎ |
24 | | vk |
. . . . . . . 8
setvar 𝑘 |
25 | | vz |
. . . . . . . 8
setvar 𝑧 |
26 | | cvv 3432 |
. . . . . . . 8
class
V |
27 | 24 | cv 1538 |
. . . . . . . . . . . 12
class 𝑘 |
28 | 27, 22 | cfv 6433 |
. . . . . . . . . . 11
class (ℎ‘𝑘) |
29 | | coe 8296 |
. . . . . . . . . . 11
class
↑o |
30 | 11, 28, 29 | co 7275 |
. . . . . . . . . 10
class (𝑥 ↑o (ℎ‘𝑘)) |
31 | 28, 17 | cfv 6433 |
. . . . . . . . . 10
class (𝑓‘(ℎ‘𝑘)) |
32 | | comu 8295 |
. . . . . . . . . 10
class
·o |
33 | 30, 31, 32 | co 7275 |
. . . . . . . . 9
class ((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) |
34 | 25 | cv 1538 |
. . . . . . . . 9
class 𝑧 |
35 | | coa 8294 |
. . . . . . . . 9
class
+o |
36 | 33, 34, 35 | co 7275 |
. . . . . . . 8
class (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧) |
37 | 24, 25, 26, 26, 36 | cmpo 7277 |
. . . . . . 7
class (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) |
38 | 37, 8 | cseqom 8278 |
. . . . . 6
class
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) |
39 | 23, 38 | cfv 6433 |
. . . . 5
class
(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) |
40 | 16, 21, 39 | csb 3832 |
. . . 4
class
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) |
41 | 5, 15, 40 | cmpt 5157 |
. . 3
class (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) |
42 | 2, 3, 4, 4, 41 | cmpo 7277 |
. 2
class (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
43 | 1, 42 | wceq 1539 |
1
wff CNF =
(𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |