Detailed syntax breakdown of Definition df-oi
| Step | Hyp | Ref
| Expression |
| 1 | | cA |
. . 3
class 𝐴 |
| 2 | | cR |
. . 3
class 𝑅 |
| 3 | 1, 2 | coi 9549 |
. 2
class
OrdIso(𝑅, 𝐴) |
| 4 | 1, 2 | wwe 5636 |
. . . 4
wff 𝑅 We 𝐴 |
| 5 | 1, 2 | wse 5635 |
. . . 4
wff 𝑅 Se 𝐴 |
| 6 | 4, 5 | wa 395 |
. . 3
wff (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) |
| 7 | | vh |
. . . . . 6
setvar ℎ |
| 8 | | cvv 3480 |
. . . . . 6
class
V |
| 9 | | vu |
. . . . . . . . . . 11
setvar 𝑢 |
| 10 | 9 | cv 1539 |
. . . . . . . . . 10
class 𝑢 |
| 11 | | vv |
. . . . . . . . . . 11
setvar 𝑣 |
| 12 | 11 | cv 1539 |
. . . . . . . . . 10
class 𝑣 |
| 13 | 10, 12, 2 | wbr 5143 |
. . . . . . . . 9
wff 𝑢𝑅𝑣 |
| 14 | 13 | wn 3 |
. . . . . . . 8
wff ¬
𝑢𝑅𝑣 |
| 15 | | vj |
. . . . . . . . . . . 12
setvar 𝑗 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑗 |
| 17 | | vw |
. . . . . . . . . . . 12
setvar 𝑤 |
| 18 | 17 | cv 1539 |
. . . . . . . . . . 11
class 𝑤 |
| 19 | 16, 18, 2 | wbr 5143 |
. . . . . . . . . 10
wff 𝑗𝑅𝑤 |
| 20 | 7 | cv 1539 |
. . . . . . . . . . 11
class ℎ |
| 21 | 20 | crn 5686 |
. . . . . . . . . 10
class ran ℎ |
| 22 | 19, 15, 21 | wral 3061 |
. . . . . . . . 9
wff
∀𝑗 ∈ ran
ℎ 𝑗𝑅𝑤 |
| 23 | 22, 17, 1 | crab 3436 |
. . . . . . . 8
class {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| 24 | 14, 9, 23 | wral 3061 |
. . . . . . 7
wff
∀𝑢 ∈
{𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 |
| 25 | 24, 11, 23 | crio 7387 |
. . . . . 6
class
(℩𝑣
∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) |
| 26 | 7, 8, 25 | cmpt 5225 |
. . . . 5
class (ℎ ∈ V ↦
(℩𝑣 ∈
{𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) |
| 27 | 26 | crecs 8410 |
. . . 4
class
recs((ℎ ∈ V
↦ (℩𝑣
∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) |
| 28 | | vz |
. . . . . . . . 9
setvar 𝑧 |
| 29 | 28 | cv 1539 |
. . . . . . . 8
class 𝑧 |
| 30 | | vt |
. . . . . . . . 9
setvar 𝑡 |
| 31 | 30 | cv 1539 |
. . . . . . . 8
class 𝑡 |
| 32 | 29, 31, 2 | wbr 5143 |
. . . . . . 7
wff 𝑧𝑅𝑡 |
| 33 | | vx |
. . . . . . . . 9
setvar 𝑥 |
| 34 | 33 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 35 | 27, 34 | cima 5688 |
. . . . . . 7
class
(recs((ℎ ∈ V
↦ (℩𝑣
∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥) |
| 36 | 32, 28, 35 | wral 3061 |
. . . . . 6
wff
∀𝑧 ∈
(recs((ℎ ∈ V ↦
(℩𝑣 ∈
{𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡 |
| 37 | 36, 30, 1 | wrex 3070 |
. . . . 5
wff
∃𝑡 ∈
𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦
(℩𝑣 ∈
{𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡 |
| 38 | | con0 6384 |
. . . . 5
class
On |
| 39 | 37, 33, 38 | crab 3436 |
. . . 4
class {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡} |
| 40 | 27, 39 | cres 5687 |
. . 3
class
(recs((ℎ ∈ V
↦ (℩𝑣
∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}) |
| 41 | | c0 4333 |
. . 3
class
∅ |
| 42 | 6, 40, 41 | cif 4525 |
. 2
class if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) |
| 43 | 3, 42 | wceq 1540 |
1
wff
OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) |