| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnffval2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of df-cnf 9622 which relies on cantnf 9653. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 9624 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| Ref | Expression |
|---|---|
| cantnffval2 | ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | oemapval.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 5 | 1, 2, 3, 4 | cantnf 9653 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |
| 6 | isof1o 7301 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | |
| 7 | f1orel 6806 | . . . 4 ⊢ ((𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵) → Rel (𝐴 CNF 𝐵)) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → Rel (𝐴 CNF 𝐵)) |
| 9 | dfrel2 6165 | . . 3 ⊢ (Rel (𝐴 CNF 𝐵) ↔ ◡◡(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵)) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ◡◡(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵)) |
| 11 | oecl 8504 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
| 12 | 2, 3, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
| 13 | eloni 6345 | . . . . . 6 ⊢ ((𝐴 ↑o 𝐵) ∈ On → Ord (𝐴 ↑o 𝐵)) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑o 𝐵)) |
| 15 | isocnv 7308 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) | |
| 16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) |
| 17 | 1, 2, 3, 4 | oemapwe 9654 | . . . . . . 7 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
| 18 | 17 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑇 We 𝑆) |
| 19 | ovex 7423 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
| 20 | 19 | dmex 7888 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
| 21 | 1, 20 | eqeltri 2825 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 22 | exse 5601 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
| 24 | eqid 2730 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
| 25 | 24 | oieu 9499 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
| 26 | 18, 23, 25 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
| 27 | 14, 16, 26 | mpbi2and 712 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
| 28 | 27 | simprd 495 | . . 3 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)) |
| 29 | 28 | cnveqd 5842 | . 2 ⊢ (𝜑 → ◡◡(𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| 30 | 10, 29 | eqtr3d 2767 | 1 ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 Vcvv 3450 {copab 5172 E cep 5540 Se wse 5592 We wwe 5593 ◡ccnv 5640 dom cdm 5641 Rel wrel 5646 Ord word 6334 Oncon0 6335 –1-1-onto→wf1o 6513 ‘cfv 6514 Isom wiso 6515 (class class class)co 7390 ↑o coe 8436 OrdIsocoi 9469 CNF ccnf 9621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-seqom 8419 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-oexp 8443 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-oi 9470 df-cnf 9622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |