MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval2 Structured version   Visualization version   GIF version

Theorem cantnffval2 9580
Description: An alternate definition of df-cnf 9547 which relies on cantnf 9578. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 9549 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
Assertion
Ref Expression
cantnffval2 (𝜑 → (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐵   𝑤,𝐴,𝑥,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem cantnffval2
StepHypRef Expression
1 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
2 cantnfs.a . . . . 5 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . . 5 (𝜑𝐵 ∈ On)
4 oemapval.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
51, 2, 3, 4cantnf 9578 . . . 4 (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)))
6 isof1o 7252 . . . 4 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵))
7 f1orel 6761 . . . 4 ((𝐴 CNF 𝐵):𝑆1-1-onto→(𝐴o 𝐵) → Rel (𝐴 CNF 𝐵))
85, 6, 73syl 18 . . 3 (𝜑 → Rel (𝐴 CNF 𝐵))
9 dfrel2 6131 . . 3 (Rel (𝐴 CNF 𝐵) ↔ (𝐴 CNF 𝐵) = (𝐴 CNF 𝐵))
108, 9sylib 218 . 2 (𝜑(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵))
11 oecl 8447 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
122, 3, 11syl2anc 584 . . . . . 6 (𝜑 → (𝐴o 𝐵) ∈ On)
13 eloni 6311 . . . . . 6 ((𝐴o 𝐵) ∈ On → Ord (𝐴o 𝐵))
1412, 13syl 17 . . . . 5 (𝜑 → Ord (𝐴o 𝐵))
15 isocnv 7259 . . . . . 6 ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴o 𝐵)) → (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
165, 15syl 17 . . . . 5 (𝜑(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆))
171, 2, 3, 4oemapwe 9579 . . . . . . 7 (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴o 𝐵)))
1817simpld 494 . . . . . 6 (𝜑𝑇 We 𝑆)
19 ovex 7374 . . . . . . . . 9 (𝐴 CNF 𝐵) ∈ V
2019dmex 7834 . . . . . . . 8 dom (𝐴 CNF 𝐵) ∈ V
211, 20eqeltri 2827 . . . . . . 7 𝑆 ∈ V
22 exse 5571 . . . . . . 7 (𝑆 ∈ V → 𝑇 Se 𝑆)
2321, 22ax-mp 5 . . . . . 6 𝑇 Se 𝑆
24 eqid 2731 . . . . . . 7 OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆)
2524oieu 9420 . . . . . 6 ((𝑇 We 𝑆𝑇 Se 𝑆) → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2618, 23, 25sylancl 586 . . . . 5 (𝜑 → ((Ord (𝐴o 𝐵) ∧ (𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴o 𝐵), 𝑆)) ↔ ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))))
2714, 16, 26mpbi2and 712 . . . 4 (𝜑 → ((𝐴o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))
2827simprd 495 . . 3 (𝜑(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
2928cnveqd 5810 . 2 (𝜑(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
3010, 29eqtr3d 2768 1 (𝜑 → (𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  {copab 5148   E cep 5510   Se wse 5562   We wwe 5563  ccnv 5610  dom cdm 5611  Rel wrel 5616  Ord word 6300  Oncon0 6301  1-1-ontowf1o 6475  cfv 6476   Isom wiso 6477  (class class class)co 7341  o coe 8379  OrdIsocoi 9390   CNF ccnf 9546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-seqom 8362  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-oexp 8386  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-oi 9391  df-cnf 9547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator