| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnffval2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of df-cnf 9577 which relies on cantnf 9608. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 9579 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| Ref | Expression |
|---|---|
| cantnffval2 | ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | oemapval.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 5 | 1, 2, 3, 4 | cantnf 9608 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |
| 6 | isof1o 7264 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | |
| 7 | f1orel 6771 | . . . 4 ⊢ ((𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵) → Rel (𝐴 CNF 𝐵)) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → Rel (𝐴 CNF 𝐵)) |
| 9 | dfrel2 6142 | . . 3 ⊢ (Rel (𝐴 CNF 𝐵) ↔ ◡◡(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵)) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ◡◡(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵)) |
| 11 | oecl 8462 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
| 12 | 2, 3, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
| 13 | eloni 6321 | . . . . . 6 ⊢ ((𝐴 ↑o 𝐵) ∈ On → Ord (𝐴 ↑o 𝐵)) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑o 𝐵)) |
| 15 | isocnv 7271 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) | |
| 16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) |
| 17 | 1, 2, 3, 4 | oemapwe 9609 | . . . . . . 7 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
| 18 | 17 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑇 We 𝑆) |
| 19 | ovex 7386 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
| 20 | 19 | dmex 7849 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
| 21 | 1, 20 | eqeltri 2824 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 22 | exse 5583 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
| 24 | eqid 2729 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
| 25 | 24 | oieu 9450 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
| 26 | 18, 23, 25 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
| 27 | 14, 16, 26 | mpbi2and 712 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
| 28 | 27 | simprd 495 | . . 3 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)) |
| 29 | 28 | cnveqd 5822 | . 2 ⊢ (𝜑 → ◡◡(𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| 30 | 10, 29 | eqtr3d 2766 | 1 ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3438 {copab 5157 E cep 5522 Se wse 5574 We wwe 5575 ◡ccnv 5622 dom cdm 5623 Rel wrel 5628 Ord word 6310 Oncon0 6311 –1-1-onto→wf1o 6485 ‘cfv 6486 Isom wiso 6487 (class class class)co 7353 ↑o coe 8394 OrdIsocoi 9420 CNF ccnf 9576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-seqom 8377 df-1o 8395 df-2o 8396 df-oadd 8399 df-omul 8400 df-oexp 8401 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-cnf 9577 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |