| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cantnffval2 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of df-cnf 9547 which relies on cantnf 9578. (Note that although the use of 𝑆 seems self-referential, one can use cantnfdm 9549 to eliminate it.) (Contributed by Mario Carneiro, 28-May-2015.) |
| Ref | Expression |
|---|---|
| cantnfs.s | ⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| cantnfs.a | ⊢ (𝜑 → 𝐴 ∈ On) |
| cantnfs.b | ⊢ (𝜑 → 𝐵 ∈ On) |
| oemapval.t | ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} |
| Ref | Expression |
|---|---|
| cantnffval2 | ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | . . . . 5 ⊢ 𝑆 = dom (𝐴 CNF 𝐵) | |
| 2 | cantnfs.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ On) | |
| 3 | cantnfs.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ On) | |
| 4 | oemapval.t | . . . . 5 ⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐵 ((𝑥‘𝑧) ∈ (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐵 (𝑧 ∈ 𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤)))} | |
| 5 | 1, 2, 3, 4 | cantnf 9578 | . . . 4 ⊢ (𝜑 → (𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵))) |
| 6 | isof1o 7252 | . . . 4 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → (𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵)) | |
| 7 | f1orel 6761 | . . . 4 ⊢ ((𝐴 CNF 𝐵):𝑆–1-1-onto→(𝐴 ↑o 𝐵) → Rel (𝐴 CNF 𝐵)) | |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → Rel (𝐴 CNF 𝐵)) |
| 9 | dfrel2 6131 | . . 3 ⊢ (Rel (𝐴 CNF 𝐵) ↔ ◡◡(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵)) | |
| 10 | 8, 9 | sylib 218 | . 2 ⊢ (𝜑 → ◡◡(𝐴 CNF 𝐵) = (𝐴 CNF 𝐵)) |
| 11 | oecl 8447 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) | |
| 12 | 2, 3, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐴 ↑o 𝐵) ∈ On) |
| 13 | eloni 6311 | . . . . . 6 ⊢ ((𝐴 ↑o 𝐵) ∈ On → Ord (𝐴 ↑o 𝐵)) | |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → Ord (𝐴 ↑o 𝐵)) |
| 15 | isocnv 7259 | . . . . . 6 ⊢ ((𝐴 CNF 𝐵) Isom 𝑇, E (𝑆, (𝐴 ↑o 𝐵)) → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) | |
| 16 | 5, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) |
| 17 | 1, 2, 3, 4 | oemapwe 9579 | . . . . . . 7 ⊢ (𝜑 → (𝑇 We 𝑆 ∧ dom OrdIso(𝑇, 𝑆) = (𝐴 ↑o 𝐵))) |
| 18 | 17 | simpld 494 | . . . . . 6 ⊢ (𝜑 → 𝑇 We 𝑆) |
| 19 | ovex 7374 | . . . . . . . . 9 ⊢ (𝐴 CNF 𝐵) ∈ V | |
| 20 | 19 | dmex 7834 | . . . . . . . 8 ⊢ dom (𝐴 CNF 𝐵) ∈ V |
| 21 | 1, 20 | eqeltri 2827 | . . . . . . 7 ⊢ 𝑆 ∈ V |
| 22 | exse 5571 | . . . . . . 7 ⊢ (𝑆 ∈ V → 𝑇 Se 𝑆) | |
| 23 | 21, 22 | ax-mp 5 | . . . . . 6 ⊢ 𝑇 Se 𝑆 |
| 24 | eqid 2731 | . . . . . . 7 ⊢ OrdIso(𝑇, 𝑆) = OrdIso(𝑇, 𝑆) | |
| 25 | 24 | oieu 9420 | . . . . . 6 ⊢ ((𝑇 We 𝑆 ∧ 𝑇 Se 𝑆) → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
| 26 | 18, 23, 25 | sylancl 586 | . . . . 5 ⊢ (𝜑 → ((Ord (𝐴 ↑o 𝐵) ∧ ◡(𝐴 CNF 𝐵) Isom E , 𝑇 ((𝐴 ↑o 𝐵), 𝑆)) ↔ ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)))) |
| 27 | 14, 16, 26 | mpbi2and 712 | . . . 4 ⊢ (𝜑 → ((𝐴 ↑o 𝐵) = dom OrdIso(𝑇, 𝑆) ∧ ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆))) |
| 28 | 27 | simprd 495 | . . 3 ⊢ (𝜑 → ◡(𝐴 CNF 𝐵) = OrdIso(𝑇, 𝑆)) |
| 29 | 28 | cnveqd 5810 | . 2 ⊢ (𝜑 → ◡◡(𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| 30 | 10, 29 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝐴 CNF 𝐵) = ◡OrdIso(𝑇, 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 Vcvv 3436 {copab 5148 E cep 5510 Se wse 5562 We wwe 5563 ◡ccnv 5610 dom cdm 5611 Rel wrel 5616 Ord word 6300 Oncon0 6301 –1-1-onto→wf1o 6475 ‘cfv 6476 Isom wiso 6477 (class class class)co 7341 ↑o coe 8379 OrdIsocoi 9390 CNF ccnf 9546 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-seqom 8362 df-1o 8380 df-2o 8381 df-oadd 8384 df-omul 8385 df-oexp 8386 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-oi 9391 df-cnf 9547 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |