MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval Structured version   Visualization version   GIF version

Theorem cantnffval 9732
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnffval (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑧,𝐴   𝐵,𝑓,𝑔,,𝑘,𝑧   𝑆,𝑓
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,,𝑘)   𝑆(𝑧,𝑔,,𝑘)

Proof of Theorem cantnffval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.a . 2 (𝜑𝐴 ∈ On)
2 cantnffval.b . 2 (𝜑𝐵 ∈ On)
3 oveq12 7457 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥m 𝑦) = (𝐴m 𝐵))
43rabeqdv 3459 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
5 cantnffval.s . . . . 5 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
64, 5eqtr4di 2798 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} = 𝑆)
7 simp1l 1197 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → 𝑥 = 𝐴)
87oveq1d 7463 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑥o (𝑘)) = (𝐴o (𝑘)))
98oveq1d 7463 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → ((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) = ((𝐴o (𝑘)) ·o (𝑓‘(𝑘))))
109oveq1d 7463 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧) = (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧))
1110mpoeq3dva 7527 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)))
12 eqid 2740 . . . . . . 7 ∅ = ∅
13 seqomeq12 8510 . . . . . . 7 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅))
1411, 12, 13sylancl 585 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅))
1514fveq1d 6922 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))
1615csbeq2dv 3928 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))
176, 16mpteq12dv 5257 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓 ∈ {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
18 df-cnf 9731 . . 3 CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
19 ovex 7481 . . . . 5 (𝐴m 𝐵) ∈ V
205, 19rabex2 5359 . . . 4 𝑆 ∈ V
2120mptex 7260 . . 3 (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) ∈ V
2217, 18, 21ovmpoa 7605 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
231, 2, 22syl2anc 583 1 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  csb 3921  c0 4352   class class class wbr 5166  cmpt 5249   E cep 5598  dom cdm 5700  Oncon0 6395  cfv 6573  (class class class)co 7448  cmpo 7450   supp csupp 8201  seqωcseqom 8503   +o coa 8519   ·o comu 8520  o coe 8521  m cmap 8884   finSupp cfsupp 9431  OrdIsocoi 9578   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-cnf 9731
This theorem is referenced by:  cantnfdm  9733  cantnfval  9737  cantnff  9743
  Copyright terms: Public domain W3C validator