MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnffval Structured version   Visualization version   GIF version

Theorem cantnffval 9560
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnffval.s 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
cantnffval.a (𝜑𝐴 ∈ On)
cantnffval.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnffval (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑧,𝐴   𝐵,𝑓,𝑔,,𝑘,𝑧   𝑆,𝑓
Allowed substitution hints:   𝜑(𝑧,𝑓,𝑔,,𝑘)   𝑆(𝑧,𝑔,,𝑘)

Proof of Theorem cantnffval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnffval.a . 2 (𝜑𝐴 ∈ On)
2 cantnffval.b . 2 (𝜑𝐵 ∈ On)
3 oveq12 7361 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥m 𝑦) = (𝐴m 𝐵))
43rabeqdv 3411 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
5 cantnffval.s . . . . 5 𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
64, 5eqtr4di 2786 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} = 𝑆)
7 simp1l 1198 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → 𝑥 = 𝐴)
87oveq1d 7367 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑥o (𝑘)) = (𝐴o (𝑘)))
98oveq1d 7367 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → ((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) = ((𝐴o (𝑘)) ·o (𝑓‘(𝑘))))
109oveq1d 7367 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧) = (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧))
1110mpoeq3dva 7429 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)))
12 eqid 2733 . . . . . . 7 ∅ = ∅
13 seqomeq12 8379 . . . . . . 7 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅))
1411, 12, 13sylancl 586 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅))
1514fveq1d 6830 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))
1615csbeq2dv 3853 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))
176, 16mpteq12dv 5180 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑓 ∈ {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
18 df-cnf 9559 . . 3 CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
19 ovex 7385 . . . . 5 (𝐴m 𝐵) ∈ V
205, 19rabex2 5281 . . . 4 𝑆 ∈ V
2120mptex 7163 . . 3 (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) ∈ V
2217, 18, 21ovmpoa 7507 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
231, 2, 22syl2anc 584 1 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  csb 3846  c0 4282   class class class wbr 5093  cmpt 5174   E cep 5518  dom cdm 5619  Oncon0 6311  cfv 6486  (class class class)co 7352  cmpo 7354   supp csupp 8096  seqωcseqom 8372   +o coa 8388   ·o comu 8389  o coe 8390  m cmap 8756   finSupp cfsupp 9252  OrdIsocoi 9402   CNF ccnf 9558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seqom 8373  df-cnf 9559
This theorem is referenced by:  cantnfdm  9561  cantnfval  9565  cantnff  9571
  Copyright terms: Public domain W3C validator