Step | Hyp | Ref
| Expression |
1 | | cantnffval.a |
. 2
⊢ (𝜑 → 𝐴 ∈ On) |
2 | | cantnffval.b |
. 2
⊢ (𝜑 → 𝐵 ∈ On) |
3 | | oveq12 7159 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ↑m 𝑦) = (𝐴 ↑m 𝐵)) |
4 | 3 | rabeqdv 3397 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
5 | | cantnffval.s |
. . . . 5
⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} |
6 | 4, 5 | eqtr4di 2811 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} = 𝑆) |
7 | | simp1l 1194 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → 𝑥 = 𝐴) |
8 | 7 | oveq1d 7165 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ↑o (ℎ‘𝑘)) = (𝐴 ↑o (ℎ‘𝑘))) |
9 | 8 | oveq1d 7165 |
. . . . . . . . 9
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) = ((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘)))) |
10 | 9 | oveq1d 7165 |
. . . . . . . 8
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧) = (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) |
11 | 10 | mpoeq3dva 7225 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧))) |
12 | | eqid 2758 |
. . . . . . 7
⊢ ∅ =
∅ |
13 | | seqomeq12 8100 |
. . . . . . 7
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝑥
↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)) |
14 | 11, 12, 13 | sylancl 589 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)) |
15 | 14 | fveq1d 6660 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) |
16 | 15 | csbeq2dv 3812 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) = ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) |
17 | 6, 16 | mpteq12dv 5117 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
18 | | df-cnf 9158 |
. . 3
⊢ CNF =
(𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
19 | | ovex 7183 |
. . . . 5
⊢ (𝐴 ↑m 𝐵) ∈ V |
20 | 5, 19 | rabex2 5204 |
. . . 4
⊢ 𝑆 ∈ V |
21 | 20 | mptex 6977 |
. . 3
⊢ (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) ∈ V |
22 | 17, 18, 21 | ovmpoa 7300 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
23 | 1, 2, 22 | syl2anc 587 |
1
⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |