| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cantnffval.a | . 2
⊢ (𝜑 → 𝐴 ∈ On) | 
| 2 |  | cantnffval.b | . 2
⊢ (𝜑 → 𝐵 ∈ On) | 
| 3 |  | oveq12 7441 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ↑m 𝑦) = (𝐴 ↑m 𝐵)) | 
| 4 | 3 | rabeqdv 3451 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) | 
| 5 |  | cantnffval.s | . . . . 5
⊢ 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} | 
| 6 | 4, 5 | eqtr4di 2794 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} = 𝑆) | 
| 7 |  | simp1l 1197 | . . . . . . . . . . 11
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → 𝑥 = 𝐴) | 
| 8 | 7 | oveq1d 7447 | . . . . . . . . . 10
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑥 ↑o (ℎ‘𝑘)) = (𝐴 ↑o (ℎ‘𝑘))) | 
| 9 | 8 | oveq1d 7447 | . . . . . . . . 9
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) = ((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘)))) | 
| 10 | 9 | oveq1d 7447 | . . . . . . . 8
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑘 ∈ V ∧ 𝑧 ∈ V) → (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧) = (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) | 
| 11 | 10 | mpoeq3dva 7511 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧))) | 
| 12 |  | eqid 2736 | . . . . . . 7
⊢ ∅ =
∅ | 
| 13 |  | seqomeq12 8495 | . . . . . . 7
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝑥
↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)) | 
| 14 | 11, 12, 13 | sylancl 586 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)) | 
| 15 | 14 | fveq1d 6907 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) | 
| 16 | 15 | csbeq2dv 3905 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) = ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) | 
| 17 | 6, 16 | mpteq12dv 5232 | . . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) | 
| 18 |  | df-cnf 9703 | . . 3
⊢  CNF =
(𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) | 
| 19 |  | ovex 7465 | . . . . 5
⊢ (𝐴 ↑m 𝐵) ∈ V | 
| 20 | 5, 19 | rabex2 5340 | . . . 4
⊢ 𝑆 ∈ V | 
| 21 | 20 | mptex 7244 | . . 3
⊢ (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) ∈ V | 
| 22 | 17, 18, 21 | ovmpoa 7589 | . 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) | 
| 23 | 1, 2, 22 | syl2anc 584 | 1
⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ 𝑆 ↦ ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |