![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cntzfval | Structured version Visualization version GIF version |
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzfval.p | ⊢ + = (+g‘𝑀) |
cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
Ref | Expression |
---|---|
cntzfval | ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzfval.z | . 2 ⊢ 𝑍 = (Cntz‘𝑀) | |
2 | elex 3480 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
3 | fveq2 6896 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
4 | cntzfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
5 | 3, 4 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
6 | 5 | pweqd 4621 | . . . . 5 ⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵) |
7 | fveq2 6896 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
8 | cntzfval.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑀) | |
9 | 7, 8 | eqtr4di 2783 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = + ) |
10 | 9 | oveqd 7436 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑥(+g‘𝑚)𝑦) = (𝑥 + 𝑦)) |
11 | 9 | oveqd 7436 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑦(+g‘𝑚)𝑥) = (𝑦 + 𝑥)) |
12 | 10, 11 | eqeq12d 2741 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
13 | 12 | ralbidv 3167 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
14 | 5, 13 | rabeqbidv 3436 | . . . . 5 ⊢ (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
15 | 6, 14 | mpteq12dv 5240 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
16 | df-cntz 19280 | . . . 4 ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | |
17 | 4 | fvexi 6910 | . . . . . 6 ⊢ 𝐵 ∈ V |
18 | 17 | pwex 5380 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
19 | 18 | mptex 7235 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V |
20 | 15, 16, 19 | fvmpt 7004 | . . 3 ⊢ (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
21 | 2, 20 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
22 | 1, 21 | eqtrid 2777 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3050 {crab 3418 Vcvv 3461 𝒫 cpw 4604 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 Cntzccntz 19278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-cntz 19280 |
This theorem is referenced by: cntzval 19284 cntzrcl 19290 |
Copyright terms: Public domain | W3C validator |