MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzfval Structured version   Visualization version   GIF version

Theorem cntzfval 19283
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzfval (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
Distinct variable groups:   𝑥,𝑠,𝑦, +   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑉(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem cntzfval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.z . 2 𝑍 = (Cntz‘𝑀)
2 elex 3480 . . 3 (𝑀𝑉𝑀 ∈ V)
3 fveq2 6896 . . . . . . 7 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
4 cntzfval.b . . . . . . 7 𝐵 = (Base‘𝑀)
53, 4eqtr4di 2783 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
65pweqd 4621 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵)
7 fveq2 6896 . . . . . . . . . 10 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
8 cntzfval.p . . . . . . . . . 10 + = (+g𝑀)
97, 8eqtr4di 2783 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = + )
109oveqd 7436 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥 + 𝑦))
119oveqd 7436 . . . . . . . 8 (𝑚 = 𝑀 → (𝑦(+g𝑚)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2741 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
1312ralbidv 3167 . . . . . 6 (𝑚 = 𝑀 → (∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥) ↔ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
145, 13rabeqbidv 3436 . . . . 5 (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)} = {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
156, 14mpteq12dv 5240 . . . 4 (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
16 df-cntz 19280 . . . 4 Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}))
174fvexi 6910 . . . . . 6 𝐵 ∈ V
1817pwex 5380 . . . . 5 𝒫 𝐵 ∈ V
1918mptex 7235 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V
2015, 16, 19fvmpt 7004 . . 3 (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
212, 20syl 17 . 2 (𝑀𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
221, 21eqtrid 2777 1 (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3050  {crab 3418  Vcvv 3461  𝒫 cpw 4604  cmpt 5232  cfv 6549  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  Cntzccntz 19278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-cntz 19280
This theorem is referenced by:  cntzval  19284  cntzrcl  19290
  Copyright terms: Public domain W3C validator