MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzfval Structured version   Visualization version   GIF version

Theorem cntzfval 19252
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzfval (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
Distinct variable groups:   𝑥,𝑠,𝑦, +   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑉(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem cntzfval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.z . 2 𝑍 = (Cntz‘𝑀)
2 elex 3468 . . 3 (𝑀𝑉𝑀 ∈ V)
3 fveq2 6858 . . . . . . 7 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
4 cntzfval.b . . . . . . 7 𝐵 = (Base‘𝑀)
53, 4eqtr4di 2782 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
65pweqd 4580 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵)
7 fveq2 6858 . . . . . . . . . 10 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
8 cntzfval.p . . . . . . . . . 10 + = (+g𝑀)
97, 8eqtr4di 2782 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = + )
109oveqd 7404 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥 + 𝑦))
119oveqd 7404 . . . . . . . 8 (𝑚 = 𝑀 → (𝑦(+g𝑚)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2745 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
1312ralbidv 3156 . . . . . 6 (𝑚 = 𝑀 → (∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥) ↔ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
145, 13rabeqbidv 3424 . . . . 5 (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)} = {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
156, 14mpteq12dv 5194 . . . 4 (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
16 df-cntz 19249 . . . 4 Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}))
174fvexi 6872 . . . . . 6 𝐵 ∈ V
1817pwex 5335 . . . . 5 𝒫 𝐵 ∈ V
1918mptex 7197 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V
2015, 16, 19fvmpt 6968 . . 3 (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
212, 20syl 17 . 2 (𝑀𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
221, 21eqtrid 2776 1 (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  𝒫 cpw 4563  cmpt 5188  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Cntzccntz 19247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-cntz 19249
This theorem is referenced by:  cntzval  19253  cntzrcl  19259
  Copyright terms: Public domain W3C validator