MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzfval Structured version   Visualization version   GIF version

Theorem cntzfval 18841
Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzfval (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
Distinct variable groups:   𝑥,𝑠,𝑦, +   𝐵,𝑠,𝑥   𝑀,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝑉(𝑥,𝑦,𝑠)   𝑍(𝑥,𝑦,𝑠)

Proof of Theorem cntzfval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.z . 2 𝑍 = (Cntz‘𝑀)
2 elex 3440 . . 3 (𝑀𝑉𝑀 ∈ V)
3 fveq2 6756 . . . . . . 7 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
4 cntzfval.b . . . . . . 7 𝐵 = (Base‘𝑀)
53, 4eqtr4di 2797 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
65pweqd 4549 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵)
7 fveq2 6756 . . . . . . . . . 10 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
8 cntzfval.p . . . . . . . . . 10 + = (+g𝑀)
97, 8eqtr4di 2797 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = + )
109oveqd 7272 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥 + 𝑦))
119oveqd 7272 . . . . . . . 8 (𝑚 = 𝑀 → (𝑦(+g𝑚)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2754 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
1312ralbidv 3120 . . . . . 6 (𝑚 = 𝑀 → (∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥) ↔ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
145, 13rabeqbidv 3410 . . . . 5 (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)} = {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})
156, 14mpteq12dv 5161 . . . 4 (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
16 df-cntz 18838 . . . 4 Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}))
174fvexi 6770 . . . . . 6 𝐵 ∈ V
1817pwex 5298 . . . . 5 𝒫 𝐵 ∈ V
1918mptex 7081 . . . 4 (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V
2015, 16, 19fvmpt 6857 . . 3 (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
212, 20syl 17 . 2 (𝑀𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
221, 21eqtrid 2790 1 (𝑀𝑉𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥𝐵 ∣ ∀𝑦𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Cntzccntz 18836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-cntz 18838
This theorem is referenced by:  cntzval  18842  cntzrcl  18848
  Copyright terms: Public domain W3C validator