| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cntzfval | Structured version Visualization version GIF version | ||
| Description: First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| cntzfval.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzfval.p | ⊢ + = (+g‘𝑀) |
| cntzfval.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| Ref | Expression |
|---|---|
| cntzfval | ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzfval.z | . 2 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 2 | elex 3480 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 3 | fveq2 6876 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) | |
| 4 | cntzfval.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑀) | |
| 5 | 3, 4 | eqtr4di 2788 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵) |
| 6 | 5 | pweqd 4592 | . . . . 5 ⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 𝐵) |
| 7 | fveq2 6876 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) | |
| 8 | cntzfval.p | . . . . . . . . . 10 ⊢ + = (+g‘𝑀) | |
| 9 | 7, 8 | eqtr4di 2788 | . . . . . . . . 9 ⊢ (𝑚 = 𝑀 → (+g‘𝑚) = + ) |
| 10 | 9 | oveqd 7422 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑥(+g‘𝑚)𝑦) = (𝑥 + 𝑦)) |
| 11 | 9 | oveqd 7422 | . . . . . . . 8 ⊢ (𝑚 = 𝑀 → (𝑦(+g‘𝑚)𝑥) = (𝑦 + 𝑥)) |
| 12 | 10, 11 | eqeq12d 2751 | . . . . . . 7 ⊢ (𝑚 = 𝑀 → ((𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 13 | 12 | ralbidv 3163 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥) ↔ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 14 | 5, 13 | rabeqbidv 3434 | . . . . 5 ⊢ (𝑚 = 𝑀 → {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)} = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) |
| 15 | 6, 14 | mpteq12dv 5207 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)}) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
| 16 | df-cntz 19300 | . . . 4 ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | |
| 17 | 4 | fvexi 6890 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 18 | 17 | pwex 5350 | . . . . 5 ⊢ 𝒫 𝐵 ∈ V |
| 19 | 18 | mptex 7215 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) ∈ V |
| 20 | 15, 16, 19 | fvmpt 6986 | . . 3 ⊢ (𝑀 ∈ V → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
| 21 | 2, 20 | syl 17 | . 2 ⊢ (𝑀 ∈ 𝑉 → (Cntz‘𝑀) = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
| 22 | 1, 21 | eqtrid 2782 | 1 ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 𝒫 cpw 4575 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Cntzccntz 19298 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-cntz 19300 |
| This theorem is referenced by: cntzval 19304 cntzrcl 19310 |
| Copyright terms: Public domain | W3C validator |