MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 17968
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
coafval.x = (comp‘𝐶)
Assertion
Ref Expression
coafval · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Distinct variable groups:   𝑓,𝑔,,𝐴   𝐶,𝑓,𝑔,
Allowed substitution hints:   (𝑓,𝑔,)   · (𝑓,𝑔,)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 · = (compa𝐶)
2 fveq2 6822 . . . . . 6 (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶))
3 coafval.a . . . . . 6 𝐴 = (Arrow‘𝐶)
42, 3eqtr4di 2784 . . . . 5 (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴)
54rabeqdv 3410 . . . . 5 (𝑐 = 𝐶 → { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
6 fveq2 6822 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
7 coafval.x . . . . . . . . 9 = (comp‘𝐶)
86, 7eqtr4di 2784 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = )
98oveqd 7363 . . . . . . 7 (𝑐 = 𝐶 → (⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔)) = (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)))
109oveqd 7363 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓)) = ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)))
1110oteq3d 4839 . . . . 5 (𝑐 = 𝐶 → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
124, 5, 11mpoeq123dv 7421 . . . 4 (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
13 df-coa 17960 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
143fvexi 6836 . . . . 5 𝐴 ∈ V
1514rabex 5277 . . . . 5 {𝐴 ∣ (coda) = (doma𝑔)} ∈ V
1614, 15mpoex 8011 . . . 4 (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) ∈ V
1712, 13, 16fvmpt 6929 . . 3 (𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
1813fvmptndm 6960 . . . 4 𝐶 ∈ Cat → (compa𝐶) = ∅)
193arwrcl 17948 . . . . . . . 8 (𝑓𝐴𝐶 ∈ Cat)
2019con3i 154 . . . . . . 7 𝐶 ∈ Cat → ¬ 𝑓𝐴)
2120eq0rdv 4357 . . . . . 6 𝐶 ∈ Cat → 𝐴 = ∅)
22 eqidd 2732 . . . . . 6 𝐶 ∈ Cat → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
23 eqidd 2732 . . . . . 6 𝐶 ∈ Cat → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
2421, 22, 23mpoeq123dv 7421 . . . . 5 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
25 mpo0 7431 . . . . 5 (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅
2624, 25eqtrdi 2782 . . . 4 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅)
2718, 26eqtr4d 2769 . . 3 𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
2817, 27pm2.61i 182 . 2 (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
291, 28eqtri 2754 1 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  {crab 3395  c0 4283  cop 4582  cotp 4584  cfv 6481  (class class class)co 7346  cmpo 7348  2nd c2nd 7920  compcco 17170  Catccat 17567  domacdoma 17924  codaccoda 17925  Arrowcarw 17926  compaccoa 17958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-ot 4585  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-arw 17931  df-coa 17960
This theorem is referenced by:  eldmcoa  17969  dmcoass  17970  coaval  17972  coapm  17975
  Copyright terms: Public domain W3C validator