Step | Hyp | Ref
| Expression |
1 | | coafval.o |
. 2
⊢ · =
(compa‘𝐶) |
2 | | fveq2 6774 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶)) |
3 | | coafval.a |
. . . . . 6
⊢ 𝐴 = (Arrow‘𝐶) |
4 | 2, 3 | eqtr4di 2796 |
. . . . 5
⊢ (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴) |
5 | 4 | rabeqdv 3419 |
. . . . 5
⊢ (𝑐 = 𝐶 → {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} = {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) |
6 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶)) |
7 | | coafval.x |
. . . . . . . . 9
⊢ ∙ =
(comp‘𝐶) |
8 | 6, 7 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑐 = 𝐶 → (comp‘𝑐) = ∙ ) |
9 | 8 | oveqd 7292 |
. . . . . . 7
⊢ (𝑐 = 𝐶 →
(〈(doma‘𝑓), (doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔)) =
(〈(doma‘𝑓), (doma‘𝑔)〉 ∙
(coda‘𝑔))) |
10 | 9 | oveqd 7292 |
. . . . . 6
⊢ (𝑐 = 𝐶 → ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓)) = ((2nd
‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))) |
11 | 10 | oteq3d 4818 |
. . . . 5
⊢ (𝑐 = 𝐶 →
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉 =
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |
12 | 4, 5, 11 | mpoeq123dv 7350 |
. . . 4
⊢ (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
13 | | df-coa 17771 |
. . . 4
⊢
compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |
14 | 3 | fvexi 6788 |
. . . . 5
⊢ 𝐴 ∈ V |
15 | 14 | rabex 5256 |
. . . . 5
⊢ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ∈ V |
16 | 14, 15 | mpoex 7920 |
. . . 4
⊢ (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) ∈ V |
17 | 12, 13, 16 | fvmpt 6875 |
. . 3
⊢ (𝐶 ∈ Cat →
(compa‘𝐶) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
18 | 13 | fvmptndm 6905 |
. . . 4
⊢ (¬
𝐶 ∈ Cat →
(compa‘𝐶) = ∅) |
19 | 3 | arwrcl 17759 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐴 → 𝐶 ∈ Cat) |
20 | 19 | con3i 154 |
. . . . . . 7
⊢ (¬
𝐶 ∈ Cat → ¬
𝑓 ∈ 𝐴) |
21 | 20 | eq0rdv 4338 |
. . . . . 6
⊢ (¬
𝐶 ∈ Cat → 𝐴 = ∅) |
22 | | eqidd 2739 |
. . . . . 6
⊢ (¬
𝐶 ∈ Cat → {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} = {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)}) |
23 | | eqidd 2739 |
. . . . . 6
⊢ (¬
𝐶 ∈ Cat →
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉 =
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |
24 | 21, 22, 23 | mpoeq123dv 7350 |
. . . . 5
⊢ (¬
𝐶 ∈ Cat → (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) = (𝑔 ∈ ∅, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
25 | | mpo0 7360 |
. . . . 5
⊢ (𝑔 ∈ ∅, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) = ∅ |
26 | 24, 25 | eqtrdi 2794 |
. . . 4
⊢ (¬
𝐶 ∈ Cat → (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) = ∅) |
27 | 18, 26 | eqtr4d 2781 |
. . 3
⊢ (¬
𝐶 ∈ Cat →
(compa‘𝐶) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉)) |
28 | 17, 27 | pm2.61i 182 |
. 2
⊢
(compa‘𝐶) = (𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |
29 | 1, 28 | eqtri 2766 |
1
⊢ · =
(𝑔 ∈ 𝐴, 𝑓 ∈ {ℎ ∈ 𝐴 ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉 ∙
(coda‘𝑔))(2nd ‘𝑓))〉) |