MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 18016
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o Β· = (compaβ€˜πΆ)
coafval.a 𝐴 = (Arrowβ€˜πΆ)
coafval.x βˆ™ = (compβ€˜πΆ)
Assertion
Ref Expression
coafval Β· = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
Distinct variable groups:   𝑓,𝑔,β„Ž,𝐴   𝐢,𝑓,𝑔,β„Ž
Allowed substitution hints:   βˆ™ (𝑓,𝑔,β„Ž)   Β· (𝑓,𝑔,β„Ž)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 Β· = (compaβ€˜πΆ)
2 fveq2 6891 . . . . . 6 (𝑐 = 𝐢 β†’ (Arrowβ€˜π‘) = (Arrowβ€˜πΆ))
3 coafval.a . . . . . 6 𝐴 = (Arrowβ€˜πΆ)
42, 3eqtr4di 2790 . . . . 5 (𝑐 = 𝐢 β†’ (Arrowβ€˜π‘) = 𝐴)
54rabeqdv 3447 . . . . 5 (𝑐 = 𝐢 β†’ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} = {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})
6 fveq2 6891 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = (compβ€˜πΆ))
7 coafval.x . . . . . . . . 9 βˆ™ = (compβ€˜πΆ)
86, 7eqtr4di 2790 . . . . . . . 8 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = βˆ™ )
98oveqd 7428 . . . . . . 7 (𝑐 = 𝐢 β†’ (⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”)) = (⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”)))
109oveqd 7428 . . . . . 6 (𝑐 = 𝐢 β†’ ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“)) = ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“)))
1110oteq3d 4887 . . . . 5 (𝑐 = 𝐢 β†’ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩ = ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
124, 5, 11mpoeq123dv 7486 . . . 4 (𝑐 = 𝐢 β†’ (𝑔 ∈ (Arrowβ€˜π‘), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
13 df-coa 18008 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrowβ€˜π‘), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
143fvexi 6905 . . . . 5 𝐴 ∈ V
1514rabex 5332 . . . . 5 {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ∈ V
1614, 15mpoex 8068 . . . 4 (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) ∈ V
1712, 13, 16fvmpt 6998 . . 3 (𝐢 ∈ Cat β†’ (compaβ€˜πΆ) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
1813fvmptndm 7028 . . . 4 (Β¬ 𝐢 ∈ Cat β†’ (compaβ€˜πΆ) = βˆ…)
193arwrcl 17996 . . . . . . . 8 (𝑓 ∈ 𝐴 β†’ 𝐢 ∈ Cat)
2019con3i 154 . . . . . . 7 (Β¬ 𝐢 ∈ Cat β†’ Β¬ 𝑓 ∈ 𝐴)
2120eq0rdv 4404 . . . . . 6 (Β¬ 𝐢 ∈ Cat β†’ 𝐴 = βˆ…)
22 eqidd 2733 . . . . . 6 (Β¬ 𝐢 ∈ Cat β†’ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} = {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})
23 eqidd 2733 . . . . . 6 (Β¬ 𝐢 ∈ Cat β†’ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩ = ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
2421, 22, 23mpoeq123dv 7486 . . . . 5 (Β¬ 𝐢 ∈ Cat β†’ (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = (𝑔 ∈ βˆ…, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
25 mpo0 7496 . . . . 5 (𝑔 ∈ βˆ…, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = βˆ…
2624, 25eqtrdi 2788 . . . 4 (Β¬ 𝐢 ∈ Cat β†’ (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = βˆ…)
2718, 26eqtr4d 2775 . . 3 (Β¬ 𝐢 ∈ Cat β†’ (compaβ€˜πΆ) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
2817, 27pm2.61i 182 . 2 (compaβ€˜πΆ) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
291, 28eqtri 2760 1 Β· = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1541   ∈ wcel 2106  {crab 3432  βˆ…c0 4322  βŸ¨cop 4634  βŸ¨cotp 4636  β€˜cfv 6543  (class class class)co 7411   ∈ cmpo 7413  2nd c2nd 7976  compcco 17211  Catccat 17610  domacdoma 17972  codaccoda 17973  Arrowcarw 17974  compaccoa 18006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-ot 4637  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-arw 17979  df-coa 18008
This theorem is referenced by:  eldmcoa  18017  dmcoass  18018  coaval  18020  coapm  18023
  Copyright terms: Public domain W3C validator