MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 17390
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
coafval.x = (comp‘𝐶)
Assertion
Ref Expression
coafval · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Distinct variable groups:   𝑓,𝑔,,𝐴   𝐶,𝑓,𝑔,
Allowed substitution hints:   (𝑓,𝑔,)   · (𝑓,𝑔,)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 · = (compa𝐶)
2 fveq2 6658 . . . . . 6 (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶))
3 coafval.a . . . . . 6 𝐴 = (Arrow‘𝐶)
42, 3eqtr4di 2811 . . . . 5 (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴)
54rabeqdv 3397 . . . . 5 (𝑐 = 𝐶 → { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
6 fveq2 6658 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
7 coafval.x . . . . . . . . 9 = (comp‘𝐶)
86, 7eqtr4di 2811 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = )
98oveqd 7167 . . . . . . 7 (𝑐 = 𝐶 → (⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔)) = (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)))
109oveqd 7167 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓)) = ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)))
1110oteq3d 4777 . . . . 5 (𝑐 = 𝐶 → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
124, 5, 11mpoeq123dv 7223 . . . 4 (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
13 df-coa 17382 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
143fvexi 6672 . . . . 5 𝐴 ∈ V
1514rabex 5202 . . . . 5 {𝐴 ∣ (coda) = (doma𝑔)} ∈ V
1614, 15mpoex 7782 . . . 4 (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) ∈ V
1712, 13, 16fvmpt 6759 . . 3 (𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
1813fvmptndm 6789 . . . 4 𝐶 ∈ Cat → (compa𝐶) = ∅)
193arwrcl 17370 . . . . . . . 8 (𝑓𝐴𝐶 ∈ Cat)
2019con3i 157 . . . . . . 7 𝐶 ∈ Cat → ¬ 𝑓𝐴)
2120eq0rdv 4300 . . . . . 6 𝐶 ∈ Cat → 𝐴 = ∅)
22 eqidd 2759 . . . . . 6 𝐶 ∈ Cat → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
23 eqidd 2759 . . . . . 6 𝐶 ∈ Cat → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
2421, 22, 23mpoeq123dv 7223 . . . . 5 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
25 mpo0 7233 . . . . 5 (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅
2624, 25eqtrdi 2809 . . . 4 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅)
2718, 26eqtr4d 2796 . . 3 𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
2817, 27pm2.61i 185 . 2 (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
291, 28eqtri 2781 1 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  {crab 3074  c0 4225  cop 4528  cotp 4530  cfv 6335  (class class class)co 7150  cmpo 7152  2nd c2nd 7692  compcco 16635  Catccat 16993  domacdoma 17346  codaccoda 17347  Arrowcarw 17348  compaccoa 17380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-ot 4531  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-arw 17353  df-coa 17382
This theorem is referenced by:  eldmcoa  17391  dmcoass  17392  coaval  17394  coapm  17397
  Copyright terms: Public domain W3C validator