MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 18131
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
coafval.x = (comp‘𝐶)
Assertion
Ref Expression
coafval · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Distinct variable groups:   𝑓,𝑔,,𝐴   𝐶,𝑓,𝑔,
Allowed substitution hints:   (𝑓,𝑔,)   · (𝑓,𝑔,)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 · = (compa𝐶)
2 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶))
3 coafval.a . . . . . 6 𝐴 = (Arrow‘𝐶)
42, 3eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴)
54rabeqdv 3459 . . . . 5 (𝑐 = 𝐶 → { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
6 fveq2 6920 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
7 coafval.x . . . . . . . . 9 = (comp‘𝐶)
86, 7eqtr4di 2798 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = )
98oveqd 7465 . . . . . . 7 (𝑐 = 𝐶 → (⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔)) = (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)))
109oveqd 7465 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓)) = ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)))
1110oteq3d 4911 . . . . 5 (𝑐 = 𝐶 → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
124, 5, 11mpoeq123dv 7525 . . . 4 (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
13 df-coa 18123 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
143fvexi 6934 . . . . 5 𝐴 ∈ V
1514rabex 5357 . . . . 5 {𝐴 ∣ (coda) = (doma𝑔)} ∈ V
1614, 15mpoex 8120 . . . 4 (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) ∈ V
1712, 13, 16fvmpt 7029 . . 3 (𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
1813fvmptndm 7060 . . . 4 𝐶 ∈ Cat → (compa𝐶) = ∅)
193arwrcl 18111 . . . . . . . 8 (𝑓𝐴𝐶 ∈ Cat)
2019con3i 154 . . . . . . 7 𝐶 ∈ Cat → ¬ 𝑓𝐴)
2120eq0rdv 4430 . . . . . 6 𝐶 ∈ Cat → 𝐴 = ∅)
22 eqidd 2741 . . . . . 6 𝐶 ∈ Cat → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
23 eqidd 2741 . . . . . 6 𝐶 ∈ Cat → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
2421, 22, 23mpoeq123dv 7525 . . . . 5 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
25 mpo0 7535 . . . . 5 (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅
2624, 25eqtrdi 2796 . . . 4 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅)
2718, 26eqtr4d 2783 . . 3 𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
2817, 27pm2.61i 182 . 2 (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
291, 28eqtri 2768 1 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  {crab 3443  c0 4352  cop 4654  cotp 4656  cfv 6573  (class class class)co 7448  cmpo 7450  2nd c2nd 8029  compcco 17323  Catccat 17722  domacdoma 18087  codaccoda 18088  Arrowcarw 18089  compaccoa 18121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-ot 4657  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-arw 18094  df-coa 18123
This theorem is referenced by:  eldmcoa  18132  dmcoass  18133  coaval  18135  coapm  18138
  Copyright terms: Public domain W3C validator