MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 18033
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o · = (compa𝐶)
coafval.a 𝐴 = (Arrow‘𝐶)
coafval.x = (comp‘𝐶)
Assertion
Ref Expression
coafval · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Distinct variable groups:   𝑓,𝑔,,𝐴   𝐶,𝑓,𝑔,
Allowed substitution hints:   (𝑓,𝑔,)   · (𝑓,𝑔,)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 · = (compa𝐶)
2 fveq2 6861 . . . . . 6 (𝑐 = 𝐶 → (Arrow‘𝑐) = (Arrow‘𝐶))
3 coafval.a . . . . . 6 𝐴 = (Arrow‘𝐶)
42, 3eqtr4di 2783 . . . . 5 (𝑐 = 𝐶 → (Arrow‘𝑐) = 𝐴)
54rabeqdv 3424 . . . . 5 (𝑐 = 𝐶 → { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
6 fveq2 6861 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
7 coafval.x . . . . . . . . 9 = (comp‘𝐶)
86, 7eqtr4di 2783 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = )
98oveqd 7407 . . . . . . 7 (𝑐 = 𝐶 → (⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔)) = (⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔)))
109oveqd 7407 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓)) = ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓)))
1110oteq3d 4854 . . . . 5 (𝑐 = 𝐶 → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
124, 5, 11mpoeq123dv 7467 . . . 4 (𝑐 = 𝐶 → (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
13 df-coa 18025 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
143fvexi 6875 . . . . 5 𝐴 ∈ V
1514rabex 5297 . . . . 5 {𝐴 ∣ (coda) = (doma𝑔)} ∈ V
1614, 15mpoex 8061 . . . 4 (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) ∈ V
1712, 13, 16fvmpt 6971 . . 3 (𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
1813fvmptndm 7002 . . . 4 𝐶 ∈ Cat → (compa𝐶) = ∅)
193arwrcl 18013 . . . . . . . 8 (𝑓𝐴𝐶 ∈ Cat)
2019con3i 154 . . . . . . 7 𝐶 ∈ Cat → ¬ 𝑓𝐴)
2120eq0rdv 4373 . . . . . 6 𝐶 ∈ Cat → 𝐴 = ∅)
22 eqidd 2731 . . . . . 6 𝐶 ∈ Cat → {𝐴 ∣ (coda) = (doma𝑔)} = {𝐴 ∣ (coda) = (doma𝑔)})
23 eqidd 2731 . . . . . 6 𝐶 ∈ Cat → ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩ = ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
2421, 22, 23mpoeq123dv 7467 . . . . 5 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
25 mpo0 7477 . . . . 5 (𝑔 ∈ ∅, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅
2624, 25eqtrdi 2781 . . . 4 𝐶 ∈ Cat → (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩) = ∅)
2718, 26eqtr4d 2768 . . 3 𝐶 ∈ Cat → (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩))
2817, 27pm2.61i 182 . 2 (compa𝐶) = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
291, 28eqtri 2753 1 · = (𝑔𝐴, 𝑓 ∈ {𝐴 ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩ (coda𝑔))(2nd𝑓))⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {crab 3408  c0 4299  cop 4598  cotp 4600  cfv 6514  (class class class)co 7390  cmpo 7392  2nd c2nd 7970  compcco 17239  Catccat 17632  domacdoma 17989  codaccoda 17990  Arrowcarw 17991  compaccoa 18023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-arw 17996  df-coa 18025
This theorem is referenced by:  eldmcoa  18034  dmcoass  18035  coaval  18037  coapm  18040
  Copyright terms: Public domain W3C validator