MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coafval Structured version   Visualization version   GIF version

Theorem coafval 18014
Description: The value of the composition of arrows. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
coafval.o Β· = (compaβ€˜πΆ)
coafval.a 𝐴 = (Arrowβ€˜πΆ)
coafval.x βˆ™ = (compβ€˜πΆ)
Assertion
Ref Expression
coafval Β· = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
Distinct variable groups:   𝑓,𝑔,β„Ž,𝐴   𝐢,𝑓,𝑔,β„Ž
Allowed substitution hints:   βˆ™ (𝑓,𝑔,β„Ž)   Β· (𝑓,𝑔,β„Ž)

Proof of Theorem coafval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 coafval.o . 2 Β· = (compaβ€˜πΆ)
2 fveq2 6892 . . . . . 6 (𝑐 = 𝐢 β†’ (Arrowβ€˜π‘) = (Arrowβ€˜πΆ))
3 coafval.a . . . . . 6 𝐴 = (Arrowβ€˜πΆ)
42, 3eqtr4di 2791 . . . . 5 (𝑐 = 𝐢 β†’ (Arrowβ€˜π‘) = 𝐴)
54rabeqdv 3448 . . . . 5 (𝑐 = 𝐢 β†’ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} = {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})
6 fveq2 6892 . . . . . . . . 9 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = (compβ€˜πΆ))
7 coafval.x . . . . . . . . 9 βˆ™ = (compβ€˜πΆ)
86, 7eqtr4di 2791 . . . . . . . 8 (𝑐 = 𝐢 β†’ (compβ€˜π‘) = βˆ™ )
98oveqd 7426 . . . . . . 7 (𝑐 = 𝐢 β†’ (⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”)) = (⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”)))
109oveqd 7426 . . . . . 6 (𝑐 = 𝐢 β†’ ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“)) = ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“)))
1110oteq3d 4888 . . . . 5 (𝑐 = 𝐢 β†’ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩ = ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
124, 5, 11mpoeq123dv 7484 . . . 4 (𝑐 = 𝐢 β†’ (𝑔 ∈ (Arrowβ€˜π‘), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
13 df-coa 18006 . . . 4 compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrowβ€˜π‘), 𝑓 ∈ {β„Ž ∈ (Arrowβ€˜π‘) ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩(compβ€˜π‘)(codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
143fvexi 6906 . . . . 5 𝐴 ∈ V
1514rabex 5333 . . . . 5 {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ∈ V
1614, 15mpoex 8066 . . . 4 (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) ∈ V
1712, 13, 16fvmpt 6999 . . 3 (𝐢 ∈ Cat β†’ (compaβ€˜πΆ) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
1813fvmptndm 7029 . . . 4 (Β¬ 𝐢 ∈ Cat β†’ (compaβ€˜πΆ) = βˆ…)
193arwrcl 17994 . . . . . . . 8 (𝑓 ∈ 𝐴 β†’ 𝐢 ∈ Cat)
2019con3i 154 . . . . . . 7 (Β¬ 𝐢 ∈ Cat β†’ Β¬ 𝑓 ∈ 𝐴)
2120eq0rdv 4405 . . . . . 6 (Β¬ 𝐢 ∈ Cat β†’ 𝐴 = βˆ…)
22 eqidd 2734 . . . . . 6 (Β¬ 𝐢 ∈ Cat β†’ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} = {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)})
23 eqidd 2734 . . . . . 6 (Β¬ 𝐢 ∈ Cat β†’ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩ = ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
2421, 22, 23mpoeq123dv 7484 . . . . 5 (Β¬ 𝐢 ∈ Cat β†’ (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = (𝑔 ∈ βˆ…, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
25 mpo0 7494 . . . . 5 (𝑔 ∈ βˆ…, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = βˆ…
2624, 25eqtrdi 2789 . . . 4 (Β¬ 𝐢 ∈ Cat β†’ (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩) = βˆ…)
2718, 26eqtr4d 2776 . . 3 (Β¬ 𝐢 ∈ Cat β†’ (compaβ€˜πΆ) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩))
2817, 27pm2.61i 182 . 2 (compaβ€˜πΆ) = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
291, 28eqtri 2761 1 Β· = (𝑔 ∈ 𝐴, 𝑓 ∈ {β„Ž ∈ 𝐴 ∣ (codaβ€˜β„Ž) = (domaβ€˜π‘”)} ↦ ⟨(domaβ€˜π‘“), (codaβ€˜π‘”), ((2nd β€˜π‘”)(⟨(domaβ€˜π‘“), (domaβ€˜π‘”)⟩ βˆ™ (codaβ€˜π‘”))(2nd β€˜π‘“))⟩)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1542   ∈ wcel 2107  {crab 3433  βˆ…c0 4323  βŸ¨cop 4635  βŸ¨cotp 4637  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  2nd c2nd 7974  compcco 17209  Catccat 17608  domacdoma 17970  codaccoda 17971  Arrowcarw 17972  compaccoa 18004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-ot 4638  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-arw 17977  df-coa 18006
This theorem is referenced by:  eldmcoa  18015  dmcoass  18016  coaval  18018  coapm  18021
  Copyright terms: Public domain W3C validator