Detailed syntax breakdown of Definition df-coe
Step | Hyp | Ref
| Expression |
1 | | ccoe 25252 |
. 2
class
coeff |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | cc 10800 |
. . . 4
class
ℂ |
4 | | cply 25250 |
. . . 4
class
Poly |
5 | 3, 4 | cfv 6418 |
. . 3
class
(Poly‘ℂ) |
6 | | va |
. . . . . . . . 9
setvar 𝑎 |
7 | 6 | cv 1538 |
. . . . . . . 8
class 𝑎 |
8 | | vn |
. . . . . . . . . . 11
setvar 𝑛 |
9 | 8 | cv 1538 |
. . . . . . . . . 10
class 𝑛 |
10 | | c1 10803 |
. . . . . . . . . 10
class
1 |
11 | | caddc 10805 |
. . . . . . . . . 10
class
+ |
12 | 9, 10, 11 | co 7255 |
. . . . . . . . 9
class (𝑛 + 1) |
13 | | cuz 12511 |
. . . . . . . . 9
class
ℤ≥ |
14 | 12, 13 | cfv 6418 |
. . . . . . . 8
class
(ℤ≥‘(𝑛 + 1)) |
15 | 7, 14 | cima 5583 |
. . . . . . 7
class (𝑎 “
(ℤ≥‘(𝑛 + 1))) |
16 | | cc0 10802 |
. . . . . . . 8
class
0 |
17 | 16 | csn 4558 |
. . . . . . 7
class
{0} |
18 | 15, 17 | wceq 1539 |
. . . . . 6
wff (𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} |
19 | 2 | cv 1538 |
. . . . . . 7
class 𝑓 |
20 | | vz |
. . . . . . . 8
setvar 𝑧 |
21 | | cfz 13168 |
. . . . . . . . . 10
class
... |
22 | 16, 9, 21 | co 7255 |
. . . . . . . . 9
class
(0...𝑛) |
23 | | vk |
. . . . . . . . . . . 12
setvar 𝑘 |
24 | 23 | cv 1538 |
. . . . . . . . . . 11
class 𝑘 |
25 | 24, 7 | cfv 6418 |
. . . . . . . . . 10
class (𝑎‘𝑘) |
26 | 20 | cv 1538 |
. . . . . . . . . . 11
class 𝑧 |
27 | | cexp 13710 |
. . . . . . . . . . 11
class
↑ |
28 | 26, 24, 27 | co 7255 |
. . . . . . . . . 10
class (𝑧↑𝑘) |
29 | | cmul 10807 |
. . . . . . . . . 10
class
· |
30 | 25, 28, 29 | co 7255 |
. . . . . . . . 9
class ((𝑎‘𝑘) · (𝑧↑𝑘)) |
31 | 22, 30, 23 | csu 15325 |
. . . . . . . 8
class
Σ𝑘 ∈
(0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) |
32 | 20, 3, 31 | cmpt 5153 |
. . . . . . 7
class (𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
33 | 19, 32 | wceq 1539 |
. . . . . 6
wff 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) |
34 | 18, 33 | wa 395 |
. . . . 5
wff ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
35 | | cn0 12163 |
. . . . 5
class
ℕ0 |
36 | 34, 8, 35 | wrex 3064 |
. . . 4
wff
∃𝑛 ∈
ℕ0 ((𝑎
“ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
37 | | cmap 8573 |
. . . . 5
class
↑m |
38 | 3, 35, 37 | co 7255 |
. . . 4
class (ℂ
↑m ℕ0) |
39 | 36, 6, 38 | crio 7211 |
. . 3
class
(℩𝑎
∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0
((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) |
40 | 2, 5, 39 | cmpt 5153 |
. 2
class (𝑓 ∈ (Poly‘ℂ)
↦ (℩𝑎
∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0
((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
41 | 1, 40 | wceq 1539 |
1
wff coeff =
(𝑓 ∈
(Poly‘ℂ) ↦ (℩𝑎 ∈ (ℂ ↑m
ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |