MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeval Structured version   Visualization version   GIF version

Theorem coeval 26075
Description: Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
coeval (๐น โˆˆ (Polyโ€˜๐‘†) โ†’ (coeffโ€˜๐น) = (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
Distinct variable groups:   ๐‘ง,๐‘˜   ๐‘›,๐‘Ž,๐น   ๐‘†,๐‘Ž,๐‘›   ๐‘˜,๐‘Ž,๐‘ง,๐‘›
Allowed substitution hints:   ๐‘†(๐‘ง,๐‘˜)   ๐น(๐‘ง,๐‘˜)

Proof of Theorem coeval
Dummy variable ๐‘“ is distinct from all other variables.
StepHypRef Expression
1 plyssc 26052 . . 3 (Polyโ€˜๐‘†) โІ (Polyโ€˜โ„‚)
21sseli 3978 . 2 (๐น โˆˆ (Polyโ€˜๐‘†) โ†’ ๐น โˆˆ (Polyโ€˜โ„‚))
3 eqeq1 2735 . . . . . 6 (๐‘“ = ๐น โ†’ (๐‘“ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))) โ†” ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))))
43anbi2d 628 . . . . 5 (๐‘“ = ๐น โ†’ (((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐‘“ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โ†” ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
54rexbidv 3177 . . . 4 (๐‘“ = ๐น โ†’ (โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐‘“ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜)))) โ†” โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
65riotabidv 7370 . . 3 (๐‘“ = ๐น โ†’ (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐‘“ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) = (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
7 df-coe 26042 . . 3 coeff = (๐‘“ โˆˆ (Polyโ€˜โ„‚) โ†ฆ (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐‘“ = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
8 riotaex 7372 . . 3 (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))) โˆˆ V
96, 7, 8fvmpt 6998 . 2 (๐น โˆˆ (Polyโ€˜โ„‚) โ†’ (coeffโ€˜๐น) = (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
102, 9syl 17 1 (๐น โˆˆ (Polyโ€˜๐‘†) โ†’ (coeffโ€˜๐น) = (โ„ฉ๐‘Ž โˆˆ (โ„‚ โ†‘m โ„•0)โˆƒ๐‘› โˆˆ โ„•0 ((๐‘Ž โ€œ (โ„คโ‰ฅโ€˜(๐‘› + 1))) = {0} โˆง ๐น = (๐‘ง โˆˆ โ„‚ โ†ฆ ฮฃ๐‘˜ โˆˆ (0...๐‘›)((๐‘Žโ€˜๐‘˜) ยท (๐‘งโ†‘๐‘˜))))))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1540   โˆˆ wcel 2105  โˆƒwrex 3069  {csn 4628   โ†ฆ cmpt 5231   โ€œ cima 5679  โ€˜cfv 6543  โ„ฉcrio 7367  (class class class)co 7412   โ†‘m cmap 8826  โ„‚cc 11114  0cc0 11116  1c1 11117   + caddc 11119   ยท cmul 11121  โ„•0cn0 12479  โ„คโ‰ฅcuz 12829  ...cfz 13491  โ†‘cexp 14034  ฮฃcsu 15639  Polycply 26036  coeffccoe 26038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-1cn 11174  ax-addcl 11176
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-map 8828  df-nn 12220  df-n0 12480  df-ply 26040  df-coe 26042
This theorem is referenced by:  coelem  26078  coeeq  26079
  Copyright terms: Public domain W3C validator