Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeval | Structured version Visualization version GIF version |
Description: Value of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
coeval | ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyssc 25266 | . . 3 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) | |
2 | 1 | sseli 3913 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ)) |
3 | eqeq1 2742 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
4 | 3 | anbi2d 628 | . . . . 5 ⊢ (𝑓 = 𝐹 → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
5 | 4 | rexbidv 3225 | . . . 4 ⊢ (𝑓 = 𝐹 → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
6 | 5 | riotabidv 7214 | . . 3 ⊢ (𝑓 = 𝐹 → (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
7 | df-coe 25256 | . . 3 ⊢ coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | |
8 | riotaex 7216 | . . 3 ⊢ (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) ∈ V | |
9 | 6, 7, 8 | fvmpt 6857 | . 2 ⊢ (𝐹 ∈ (Poly‘ℂ) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
10 | 2, 9 | syl 17 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {csn 4558 ↦ cmpt 5153 “ cima 5583 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ↑m cmap 8573 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℕ0cn0 12163 ℤ≥cuz 12511 ...cfz 13168 ↑cexp 13710 Σcsu 15325 Polycply 25250 coeffccoe 25252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-nn 11904 df-n0 12164 df-ply 25254 df-coe 25256 |
This theorem is referenced by: coelem 25292 coeeq 25293 |
Copyright terms: Public domain | W3C validator |