![]() |
Metamath
Proof Explorer Theorem List (p. 260 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30166) |
![]() (30167-31689) |
![]() (31690-47842) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ulmshft 25901* | A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ π = (β€β₯β(π + πΎ)) & β’ (π β π β β€) & β’ (π β πΎ β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π» = (π β π β¦ (πΉβ(π β πΎ)))) β β’ (π β (πΉ(βπ’βπ)πΊ β π»(βπ’βπ)πΊ)) | ||
Theorem | ulm0 25902 | Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) β β’ ((π β§ π = β ) β πΉ(βπ’βπ)πΊ) | ||
Theorem | ulmuni 25903 | A sequence of functions uniformly converges to at most one limit. (Contributed by Mario Carneiro, 5-Jul-2017.) |
β’ ((πΉ(βπ’βπ)πΊ β§ πΉ(βπ’βπ)π») β πΊ = π») | ||
Theorem | ulmdm 25904 | Two ways to express that a function has a limit. (The expression ((βπ’βπ)βπΉ) is sometimes useful as a shorthand for "the unique limit of the function πΉ"). (Contributed by Mario Carneiro, 5-Jul-2017.) |
β’ (πΉ β dom (βπ’βπ) β πΉ(βπ’βπ)((βπ’βπ)βπΉ)) | ||
Theorem | ulmcaulem 25905* | Lemma for ulmcau 25906 and ulmcau2 25907: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 15301. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯ β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmcau 25906* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < π₯ there is a π such that for all π β€ π the functions πΉ(π) and πΉ(π) are uniformly within π₯ of each other on π. This is the four-quantifier version, see ulmcau2 25907 for the more conventional five-quantifier version. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ β dom (βπ’βπ) β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmcau2 25907* | A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < π₯ there is a π such that for all π β€ π, π the functions πΉ(π) and πΉ(π) are uniformly within π₯ of each other on π. (Contributed by Mario Carneiro, 1-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) β β’ (π β (πΉ β dom (βπ’βπ) β βπ₯ β β+ βπ β π βπ β (β€β₯βπ)βπ β (β€β₯βπ)βπ§ β π (absβ(((πΉβπ)βπ§) β ((πΉβπ)βπ§))) < π₯)) | ||
Theorem | ulmss 25908* | A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β π) & β’ ((π β§ π₯ β π) β π΄ β π) & β’ (π β (π₯ β π β¦ π΄)(βπ’βπ)πΊ) β β’ (π β (π₯ β π β¦ (π΄ βΎ π))(βπ’βπ)(πΊ βΎ π)) | ||
Theorem | ulmbdd 25909* | A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ ((π β§ π β π) β βπ₯ β β βπ§ β π (absβ((πΉβπ)βπ§)) β€ π₯) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β βπ₯ β β βπ§ β π (absβ(πΊβπ§)) β€ π₯) | ||
Theorem | ulmcn 25910 | A uniform limit of continuous functions is continuous. (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(πβcnββ)) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β πΊ β (πβcnββ)) | ||
Theorem | ulmdvlem1 25911* | Lemma for ulmdv 25914. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») & β’ ((π β§ π) β πΆ β π) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π β β+) & β’ ((π β§ π) β π < π) & β’ ((π β§ π) β (πΆ(ballβ((abs β β ) βΎ (π Γ π)))π) β π) & β’ ((π β§ π) β (absβ(π β πΆ)) < π) & β’ ((π β§ π) β π β π) & β’ ((π β§ π) β βπ β (β€β₯βπ)βπ₯ β π (absβ(((π D (πΉβπ))βπ₯) β ((π D (πΉβπ))βπ₯))) < ((π / 2) / 2)) & β’ ((π β§ π) β (absβ(((π D (πΉβπ))βπΆ) β (π»βπΆ))) < (π / 2)) & β’ ((π β§ π) β π β π) & β’ ((π β§ π) β π β πΆ) & β’ ((π β§ π) β ((absβ(π β πΆ)) < π β (absβ(((((πΉβπ)βπ) β ((πΉβπ)βπΆ)) / (π β πΆ)) β ((π D (πΉβπ))βπΆ))) < ((π / 2) / 2))) β β’ ((π β§ π) β (absβ((((πΊβπ) β (πΊβπΆ)) / (π β πΆ)) β (π»βπΆ))) < π ) | ||
Theorem | ulmdvlem2 25912* | Lemma for ulmdv 25914. (Contributed by Mario Carneiro, 8-May-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ ((π β§ π β π) β dom (π D (πΉβπ)) = π) | ||
Theorem | ulmdvlem3 25913* | Lemma for ulmdv 25914. (Contributed by Mario Carneiro, 8-May-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ ((π β§ π§ β π) β π§(π D πΊ)(π»βπ§)) | ||
Theorem | ulmdv 25914* | If πΉ is a sequence of differentiable functions on π which converge pointwise to πΊ, and the derivatives of πΉ(π) converge uniformly to π», then πΊ is differentiable with derivative π». (Contributed by Mario Carneiro, 27-Feb-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β {β, β}) & β’ (π β π β β€) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β πΊ:πβΆβ) & β’ ((π β§ π§ β π) β (π β π β¦ ((πΉβπ)βπ§)) β (πΊβπ§)) & β’ (π β (π β π β¦ (π D (πΉβπ)))(βπ’βπ)π») β β’ (π β (π D πΊ) = π») | ||
Theorem | mtest 25915* | The Weierstrass M-test. If πΉ is a sequence of functions which are uniformly bounded by the convergent sequence π(π), then the series generated by the sequence πΉ converges uniformly. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π β π) & β’ ((π β§ π β π) β (πβπ) β β) & β’ ((π β§ (π β π β§ π§ β π)) β (absβ((πΉβπ)βπ§)) β€ (πβπ)) & β’ (π β seqπ( + , π) β dom β ) β β’ (π β seqπ( βf + , πΉ) β dom (βπ’βπ)) | ||
Theorem | mtestbdd 25916* | Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π β π) & β’ (π β πΉ:πβΆ(β βm π)) & β’ (π β π β π) & β’ ((π β§ π β π) β (πβπ) β β) & β’ ((π β§ (π β π β§ π§ β π)) β (absβ((πΉβπ)βπ§)) β€ (πβπ)) & β’ (π β seqπ( + , π) β dom β ) & β’ (π β seqπ( βf + , πΉ)(βπ’βπ)π) β β’ (π β βπ₯ β β βπ§ β π (absβ(πβπ§)) β€ π₯) | ||
Theorem | mbfulm 25917 | A uniform limit of measurable functions is measurable. (This is just a corollary of the fact that a pointwise limit of measurable functions is measurable, see mbflim 25184.) (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆMblFn) & β’ (π β πΉ(βπ’βπ)πΊ) β β’ (π β πΊ β MblFn) | ||
Theorem | iblulm 25918 | A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆπΏ1) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β (volβπ) β β) β β’ (π β πΊ β πΏ1) | ||
Theorem | itgulm 25919* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β πΉ:πβΆπΏ1) & β’ (π β πΉ(βπ’βπ)πΊ) & β’ (π β (volβπ) β β) β β’ (π β (π β π β¦ β«π((πΉβπ)βπ₯) dπ₯) β β«π(πΊβπ₯) dπ₯) | ||
Theorem | itgulm2 25920* | A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ ((π β§ π β π) β (π₯ β π β¦ π΄) β πΏ1) & β’ (π β (π β π β¦ (π₯ β π β¦ π΄))(βπ’βπ)(π₯ β π β¦ π΅)) & β’ (π β (volβπ) β β) β β’ (π β ((π₯ β π β¦ π΅) β πΏ1 β§ (π β π β¦ β«ππ΄ dπ₯) β β«ππ΅ dπ₯)) | ||
Theorem | pserval 25921* | Value of the function πΊ that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) β β’ (π β β β (πΊβπ) = (π β β0 β¦ ((π΄βπ) Β· (πβπ)))) | ||
Theorem | pserval2 25922* | Value of the function πΊ that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) β β’ ((π β β β§ π β β0) β ((πΊβπ)βπ) = ((π΄βπ) Β· (πβπ))) | ||
Theorem | psergf 25923* | The sequence of terms in the infinite sequence defining a power series for fixed π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) β β’ (π β (πΊβπ):β0βΆβ) | ||
Theorem | radcnvlem1 25924* | Lemma for radcnvlt1 25929, radcnvle 25931. If π is a point closer to zero than π and the power series converges at π, then it converges absolutely at π, even if the terms in the sequence are multiplied by π. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) & β’ π» = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) β β’ (π β seq0( + , π») β dom β ) | ||
Theorem | radcnvlem2 25925* | Lemma for radcnvlt1 25929, radcnvle 25931. If π is a point closer to zero than π and the power series converges at π, then it converges absolutely at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β seq0( + , (abs β (πΊβπ))) β dom β ) | ||
Theorem | radcnvlem3 25926* | Lemma for radcnvlt1 25929, radcnvle 25931. If π is a point closer to zero than π and the power series converges at π, then it converges at π. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β π β β) & β’ (π β (absβπ) < (absβπ)) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β seq0( + , (πΊβπ)) β dom β ) | ||
Theorem | radcnv0 25927* | Zero is always a convergent point for any power series. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) β β’ (π β 0 β {π β β β£ seq0( + , (πΊβπ)) β dom β }) | ||
Theorem | radcnvcl 25928* | The radius of convergence π of an infinite series is a nonnegative extended real number. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) β β’ (π β π β (0[,]+β)) | ||
Theorem | radcnvlt1 25929* | If π is within the open disk of radius π centered at zero, then the infinite series converges absolutely at π, and also converges when the series is multiplied by π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) & β’ π» = (π β β0 β¦ (π Β· (absβ((πΊβπ)βπ)))) β β’ (π β (seq0( + , π») β dom β β§ seq0( + , (abs β (πΊβπ))) β dom β )) | ||
Theorem | radcnvlt2 25930* | If π is within the open disk of radius π centered at zero, then the infinite series converges at π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) β β’ (π β seq0( + , (πΊβπ)) β dom β ) | ||
Theorem | radcnvle 25931* | If π is a convergent point of the infinite series, then π is within the closed disk of radius π centered at zero. Or, by contraposition, the series diverges at any point strictly more than π from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ (π β π β β) & β’ (π β seq0( + , (πΊβπ)) β dom β ) β β’ (π β (absβπ) β€ π ) | ||
Theorem | dvradcnv 25932* | The radius of convergence of the (formal) derivative π» of the power series πΊ is at least as large as the radius of convergence of πΊ. (In fact they are equal, but we don't have as much use for the negative side of this claim.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (((π + 1) Β· (π΄β(π + 1))) Β· (πβπ))) & β’ (π β π΄:β0βΆβ) & β’ (π β π β β) & β’ (π β (absβπ) < π ) β β’ (π β seq0( + , π») β dom β ) | ||
Theorem | pserulm 25933* | If π is a region contained in a circle of radius π < π , then the sequence of partial sums of the infinite series converges uniformly on π. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β π»(βπ’βπ)πΉ) | ||
Theorem | psercn2 25934* | Since by pserulm 25933 the series converges uniformly, it is also continuous by ulmcn 25910. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π» = (π β β0 β¦ (π¦ β π β¦ (seq0( + , (πΊβπ¦))βπ))) & β’ (π β π β β) & β’ (π β π < π ) & β’ (π β π β (β‘abs β (0[,]π))) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | psercnlem2 25935* | Lemma for psercn 25937. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ ((π β§ π β π) β (π β β+ β§ (absβπ) < π β§ π < π )) β β’ ((π β§ π β π) β (π β (0(ballβ(abs β β ))π) β§ (0(ballβ(abs β β ))π) β (β‘abs β (0[,]π)) β§ (β‘abs β (0[,]π)) β π)) | ||
Theorem | psercnlem1 25936* | Lemma for psercn 25937. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ ((π β§ π β π) β (π β β+ β§ (absβπ) < π β§ π < π )) | ||
Theorem | psercn 25937* | An infinite series converges to a continuous function on the open disk of radius π , where π is the radius of convergence of the series. (Contributed by Mario Carneiro, 4-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | pserdvlem1 25938* | Lemma for pserdv 25940. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) β β’ ((π β§ π β π) β ((((absβπ) + π) / 2) β β+ β§ (absβπ) < (((absβπ) + π) / 2) β§ (((absβπ) + π) / 2) < π )) | ||
Theorem | pserdvlem2 25939* | Lemma for pserdv 25940. (Contributed by Mario Carneiro, 7-May-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ ((π β§ π β π) β (β D (πΉ βΎ π΅)) = (π¦ β π΅ β¦ Ξ£π β β0 (((π + 1) Β· (π΄β(π + 1))) Β· (π¦βπ)))) | ||
Theorem | pserdv 25940* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ (π β (β D πΉ) = (π¦ β π β¦ Ξ£π β β0 (((π + 1) Β· (π΄β(π + 1))) Β· (π¦βπ)))) | ||
Theorem | pserdv2 25941* | The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ πΊ = (π₯ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π₯βπ)))) & β’ πΉ = (π¦ β π β¦ Ξ£π β β0 ((πΊβπ¦)βπ)) & β’ (π β π΄:β0βΆβ) & β’ π = sup({π β β β£ seq0( + , (πΊβπ)) β dom β }, β*, < ) & β’ π = (β‘abs β (0[,)π )) & β’ π = if(π β β, (((absβπ) + π ) / 2), ((absβπ) + 1)) & β’ π΅ = (0(ballβ(abs β β ))(((absβπ) + π) / 2)) β β’ (π β (β D πΉ) = (π¦ β π β¦ Ξ£π β β ((π Β· (π΄βπ)) Β· (π¦β(π β 1))))) | ||
Theorem | abelthlem1 25942* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) β β’ (π β 1 β€ sup({π β β β£ seq0( + , ((π§ β β β¦ (π β β0 β¦ ((π΄βπ) Β· (π§βπ))))βπ)) β dom β }, β*, < )) | ||
Theorem | abelthlem2 25943* | Lemma for abelth 25952. The peculiar region π, known as a Stolz angle , is a teardrop-shaped subset of the closed unit ball containing 1. Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} β β’ (π β (1 β π β§ (π β {1}) β (0(ballβ(abs β β ))1))) | ||
Theorem | abelthlem3 25944* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} β β’ ((π β§ π β π) β seq0( + , (π β β0 β¦ ((π΄βπ) Β· (πβπ)))) β dom β ) | ||
Theorem | abelthlem4 25945* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ (π β πΉ:πβΆβ) | ||
Theorem | abelthlem5 25946* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) β β’ ((π β§ π β (0(ballβ(abs β β ))1)) β seq0( + , (π β β0 β¦ ((seq0( + , π΄)βπ) Β· (πβπ)))) β dom β ) | ||
Theorem | abelthlem6 25947* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) & β’ (π β π β (π β {1})) β β’ (π β (πΉβπ) = ((1 β π) Β· Ξ£π β β0 ((seq0( + , π΄)βπ) Β· (πβπ)))) | ||
Theorem | abelthlem7a 25948* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 8-May-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) & β’ (π β π β (π β {1})) β β’ (π β (π β β β§ (absβ(1 β π)) β€ (π Β· (1 β (absβπ))))) | ||
Theorem | abelthlem7 25949* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) & β’ (π β π β (π β {1})) & β’ (π β π β β+) & β’ (π β π β β0) & β’ (π β βπ β (β€β₯βπ)(absβ(seq0( + , π΄)βπ)) < π ) & β’ (π β (absβ(1 β π)) < (π / (Ξ£π β (0...(π β 1))(absβ(seq0( + , π΄)βπ)) + 1))) β β’ (π β (absβ(πΉβπ)) < ((π + 1) Β· π )) | ||
Theorem | abelthlem8 25950* | Lemma for abelth 25952. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) & β’ (π β seq0( + , π΄) β 0) β β’ ((π β§ π β β+) β βπ€ β β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π )) | ||
Theorem | abelthlem9 25951* | Lemma for abelth 25952. By adjusting the constant term, we can assume that the entire series converges to 0. (Contributed by Mario Carneiro, 1-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ ((π β§ π β β+) β βπ€ β β+ βπ¦ β π ((absβ(1 β π¦)) < π€ β (absβ((πΉβ1) β (πΉβπ¦))) < π )) | ||
Theorem | abelth 25952* | Abel's theorem. If the power series Ξ£π β β0π΄(π)(π₯βπ) is convergent at 1, then it is equal to the limit from "below", along a Stolz angle π (note that the π = 1 case of a Stolz angle is the real line [0, 1]). (Continuity on π β {1} follows more generally from psercn 25937.) (Contributed by Mario Carneiro, 2-Apr-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ (π β π β β) & β’ (π β 0 β€ π) & β’ π = {π§ β β β£ (absβ(1 β π§)) β€ (π Β· (1 β (absβπ§)))} & β’ πΉ = (π₯ β π β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ (π β πΉ β (πβcnββ)) | ||
Theorem | abelth2 25953* | Abel's theorem, restricted to the [0, 1] interval. (Contributed by Mario Carneiro, 2-Apr-2015.) |
β’ (π β π΄:β0βΆβ) & β’ (π β seq0( + , π΄) β dom β ) & β’ πΉ = (π₯ β (0[,]1) β¦ Ξ£π β β0 ((π΄βπ) Β· (π₯βπ))) β β’ (π β πΉ β ((0[,]1)βcnββ)) | ||
Theorem | efcn 25954 | The exponential function is continuous. (Contributed by Paul Chapman, 15-Sep-2007.) (Revised by Mario Carneiro, 20-Jun-2015.) |
β’ exp β (ββcnββ) | ||
Theorem | sincn 25955 | Sine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
β’ sin β (ββcnββ) | ||
Theorem | coscn 25956 | Cosine is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 3-Sep-2014.) |
β’ cos β (ββcnββ) | ||
Theorem | reeff1olem 25957* | Lemma for reeff1o 25958. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.) |
β’ ((π β β β§ 1 < π) β βπ₯ β β (expβπ₯) = π) | ||
Theorem | reeff1o 25958 | The real exponential function is one-to-one onto. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 10-Nov-2013.) |
β’ (exp βΎ β):ββ1-1-ontoββ+ | ||
Theorem | reefiso 25959 | The exponential function on the reals determines an isomorphism from reals onto positive reals. (Contributed by Steve Rodriguez, 25-Nov-2007.) (Revised by Mario Carneiro, 11-Mar-2014.) |
β’ (exp βΎ β) Isom < , < (β, β+) | ||
Theorem | efcvx 25960 | The exponential function on the reals is a strictly convex function. (Contributed by Mario Carneiro, 20-Jun-2015.) |
β’ (((π΄ β β β§ π΅ β β β§ π΄ < π΅) β§ π β (0(,)1)) β (expβ((π Β· π΄) + ((1 β π) Β· π΅))) < ((π Β· (expβπ΄)) + ((1 β π) Β· (expβπ΅)))) | ||
Theorem | reefgim 25961 | The exponential function is a group isomorphism from the group of reals under addition to the group of positive reals under multiplication. (Contributed by Mario Carneiro, 21-Jun-2015.) (Revised by Thierry Arnoux, 30-Jun-2019.) |
β’ π = ((mulGrpββfld) βΎs β+) β β’ (exp βΎ β) β (βfld GrpIso π) | ||
Theorem | pilem1 25962 | Lemma for pire 25967, pigt2lt4 25965 and sinpi 25966. (Contributed by Mario Carneiro, 9-May-2014.) |
β’ (π΄ β (β+ β© (β‘sin β {0})) β (π΄ β β+ β§ (sinβπ΄) = 0)) | ||
Theorem | pilem2 25963 | Lemma for pire 25967, pigt2lt4 25965 and sinpi 25966. (Contributed by Mario Carneiro, 12-Jun-2014.) (Revised by AV, 14-Sep-2020.) |
β’ (π β π΄ β (2(,)4)) & β’ (π β π΅ β β+) & β’ (π β (sinβπ΄) = 0) & β’ (π β (sinβπ΅) = 0) β β’ (π β ((Ο + π΄) / 2) β€ π΅) | ||
Theorem | pilem3 25964 | Lemma for pire 25967, pigt2lt4 25965 and sinpi 25966. Existence part. (Contributed by Paul Chapman, 23-Jan-2008.) (Proof shortened by Mario Carneiro, 18-Jun-2014.) (Revised by AV, 14-Sep-2020.) (Proof shortened by BJ, 30-Jun-2022.) |
β’ (Ο β (2(,)4) β§ (sinβΟ) = 0) | ||
Theorem | pigt2lt4 25965 | Ο is between 2 and 4. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
β’ (2 < Ο β§ Ο < 4) | ||
Theorem | sinpi 25966 | The sine of Ο is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ (sinβΟ) = 0 | ||
Theorem | pire 25967 | Ο is a real number. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ Ο β β | ||
Theorem | picn 25968 | Ο is a complex number. (Contributed by David A. Wheeler, 6-Dec-2018.) |
β’ Ο β β | ||
Theorem | pipos 25969 | Ο is positive. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
β’ 0 < Ο | ||
Theorem | pirp 25970 | Ο is a positive real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ Ο β β+ | ||
Theorem | negpicn 25971 | -Ο is a real number. (Contributed by David A. Wheeler, 8-Dec-2018.) |
β’ -Ο β β | ||
Theorem | sinhalfpilem 25972 | Lemma for sinhalfpi 25977 and coshalfpi 25978. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ ((sinβ(Ο / 2)) = 1 β§ (cosβ(Ο / 2)) = 0) | ||
Theorem | halfpire 25973 | Ο / 2 is real. (Contributed by David Moews, 28-Feb-2017.) |
β’ (Ο / 2) β β | ||
Theorem | neghalfpire 25974 | -Ο / 2 is real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
β’ -(Ο / 2) β β | ||
Theorem | neghalfpirx 25975 | -Ο / 2 is an extended real. (Contributed by David A. Wheeler, 8-Dec-2018.) |
β’ -(Ο / 2) β β* | ||
Theorem | pidiv2halves 25976 | Adding Ο / 2 to itself gives Ο. See 2halves 12439. (Contributed by David A. Wheeler, 8-Dec-2018.) |
β’ ((Ο / 2) + (Ο / 2)) = Ο | ||
Theorem | sinhalfpi 25977 | The sine of Ο / 2 is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ (sinβ(Ο / 2)) = 1 | ||
Theorem | coshalfpi 25978 | The cosine of Ο / 2 is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ (cosβ(Ο / 2)) = 0 | ||
Theorem | cosneghalfpi 25979 | The cosine of -Ο / 2 is zero. (Contributed by David Moews, 28-Feb-2017.) |
β’ (cosβ-(Ο / 2)) = 0 | ||
Theorem | efhalfpi 25980 | The exponential of iΟ / 2 is i. (Contributed by Mario Carneiro, 9-May-2014.) |
β’ (expβ(i Β· (Ο / 2))) = i | ||
Theorem | cospi 25981 | The cosine of Ο is -1. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ (cosβΟ) = -1 | ||
Theorem | efipi 25982 | The exponential of i Β· Ο is -1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
β’ (expβ(i Β· Ο)) = -1 | ||
Theorem | eulerid 25983 | Euler's identity. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
β’ ((expβ(i Β· Ο)) + 1) = 0 | ||
Theorem | sin2pi 25984 | The sine of 2Ο is 0. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ (sinβ(2 Β· Ο)) = 0 | ||
Theorem | cos2pi 25985 | The cosine of 2Ο is 1. (Contributed by Paul Chapman, 23-Jan-2008.) |
β’ (cosβ(2 Β· Ο)) = 1 | ||
Theorem | ef2pi 25986 | The exponential of 2Οi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
β’ (expβ(i Β· (2 Β· Ο))) = 1 | ||
Theorem | ef2kpi 25987 | If πΎ is an integer, then the exponential of 2πΎΟi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
β’ (πΎ β β€ β (expβ((i Β· (2 Β· Ο)) Β· πΎ)) = 1) | ||
Theorem | efper 25988 | The exponential function is periodic. (Contributed by Paul Chapman, 21-Apr-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.) |
β’ ((π΄ β β β§ πΎ β β€) β (expβ(π΄ + ((i Β· (2 Β· Ο)) Β· πΎ))) = (expβπ΄)) | ||
Theorem | sinperlem 25989 | Lemma for sinper 25990 and cosper 25991. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
β’ (π΄ β β β (πΉβπ΄) = (((expβ(i Β· π΄))π(expβ(-i Β· π΄))) / π·)) & β’ ((π΄ + (πΎ Β· (2 Β· Ο))) β β β (πΉβ(π΄ + (πΎ Β· (2 Β· Ο)))) = (((expβ(i Β· (π΄ + (πΎ Β· (2 Β· Ο)))))π(expβ(-i Β· (π΄ + (πΎ Β· (2 Β· Ο)))))) / π·)) β β’ ((π΄ β β β§ πΎ β β€) β (πΉβ(π΄ + (πΎ Β· (2 Β· Ο)))) = (πΉβπ΄)) | ||
Theorem | sinper 25990 | The sine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
β’ ((π΄ β β β§ πΎ β β€) β (sinβ(π΄ + (πΎ Β· (2 Β· Ο)))) = (sinβπ΄)) | ||
Theorem | cosper 25991 | The cosine function is periodic. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
β’ ((π΄ β β β§ πΎ β β€) β (cosβ(π΄ + (πΎ Β· (2 Β· Ο)))) = (cosβπ΄)) | ||
Theorem | sin2kpi 25992 | If πΎ is an integer, then the sine of 2πΎΟ is 0. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
β’ (πΎ β β€ β (sinβ(πΎ Β· (2 Β· Ο))) = 0) | ||
Theorem | cos2kpi 25993 | If πΎ is an integer, then the cosine of 2πΎΟ is 1. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by Mario Carneiro, 10-May-2014.) |
β’ (πΎ β β€ β (cosβ(πΎ Β· (2 Β· Ο))) = 1) | ||
Theorem | sin2pim 25994 | Sine of a number subtracted from 2 Β· Ο. (Contributed by Paul Chapman, 15-Mar-2008.) |
β’ (π΄ β β β (sinβ((2 Β· Ο) β π΄)) = -(sinβπ΄)) | ||
Theorem | cos2pim 25995 | Cosine of a number subtracted from 2 Β· Ο. (Contributed by Paul Chapman, 15-Mar-2008.) |
β’ (π΄ β β β (cosβ((2 Β· Ο) β π΄)) = (cosβπ΄)) | ||
Theorem | sinmpi 25996 | Sine of a number less Ο. (Contributed by Paul Chapman, 15-Mar-2008.) |
β’ (π΄ β β β (sinβ(π΄ β Ο)) = -(sinβπ΄)) | ||
Theorem | cosmpi 25997 | Cosine of a number less Ο. (Contributed by Paul Chapman, 15-Mar-2008.) |
β’ (π΄ β β β (cosβ(π΄ β Ο)) = -(cosβπ΄)) | ||
Theorem | sinppi 25998 | Sine of a number plus Ο. (Contributed by NM, 10-Aug-2008.) |
β’ (π΄ β β β (sinβ(π΄ + Ο)) = -(sinβπ΄)) | ||
Theorem | cosppi 25999 | Cosine of a number plus Ο. (Contributed by NM, 18-Aug-2008.) |
β’ (π΄ β β β (cosβ(π΄ + Ο)) = -(cosβπ΄)) | ||
Theorem | efimpi 26000 | The exponential function at i times a real number less Ο. (Contributed by Paul Chapman, 15-Mar-2008.) |
β’ (π΄ β β β (expβ(i Β· (π΄ β Ο))) = -(expβ(i Β· π΄))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |