Home | Metamath
Proof Explorer Theorem List (p. 260 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dcubic 25901* | Solutions to the depressed cubic, a special case of cubic 25904. (The definitions of 𝑀, 𝑁, 𝐺, 𝑇 here differ from mcubic 25902 by scale factors of -9, 54, 54 and -27 respectively, to simplify the algebra and presentation.) (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = (𝐺 − 𝑁)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) + (𝑀↑3))) & ⊢ (𝜑 → 𝑀 = (𝑃 / 3)) & ⊢ (𝜑 → 𝑁 = (𝑄 / 2)) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → (((𝑋↑3) + ((𝑃 · 𝑋) + 𝑄)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = ((𝑟 · 𝑇) − (𝑀 / (𝑟 · 𝑇)))))) | ||
Theorem | mcubic 25902* | Solutions to a monic cubic equation, a special case of cubic 25904. (Contributed by Mario Carneiro, 24-Apr-2015.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = ((𝑁 + 𝐺) / 2)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · 𝐶))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − (9 · (𝐵 · 𝐶))) + (;27 · 𝐷))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑3) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / 3)))) | ||
Theorem | cubic2 25903* | The solution to the general cubic equation, for arbitrary choices 𝐺 and 𝑇 of the square and cube roots. (Contributed by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 ∈ ℂ) & ⊢ (𝜑 → (𝑇↑3) = ((𝑁 + 𝐺) / 2)) & ⊢ (𝜑 → 𝐺 ∈ ℂ) & ⊢ (𝜑 → (𝐺↑2) = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶)))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (;27 · ((𝐴↑2) · 𝐷)))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ ℂ ((𝑟↑3) = 1 ∧ 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴))))) | ||
Theorem | cubic 25904* | The cubic equation, which gives the roots of an arbitrary (nondegenerate) cubic function. Use rextp 4639 to convert the existential quantifier to a triple disjunction. This is Metamath 100 proof #37. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ 𝑅 = {1, ((-1 + (i · (√‘3))) / 2), ((-1 − (i · (√‘3))) / 2)} & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 0) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑇 = (((𝑁 + (√‘𝐺)) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝐺 = ((𝑁↑2) − (4 · (𝑀↑3)))) & ⊢ (𝜑 → 𝑀 = ((𝐵↑2) − (3 · (𝐴 · 𝐶)))) & ⊢ (𝜑 → 𝑁 = (((2 · (𝐵↑3)) − ((9 · 𝐴) · (𝐵 · 𝐶))) + (;27 · ((𝐴↑2) · 𝐷)))) & ⊢ (𝜑 → 𝑀 ≠ 0) ⇒ ⊢ (𝜑 → ((((𝐴 · (𝑋↑3)) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ∃𝑟 ∈ 𝑅 𝑋 = -(((𝐵 + (𝑟 · 𝑇)) + (𝑀 / (𝑟 · 𝑇))) / (3 · 𝐴)))) | ||
Theorem | binom4 25905 | Work out a quartic binomial. (You would think that by this point it would be faster to use binom 15470, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) | ||
Theorem | dquartlem1 25906 | Lemma for dquart 25908. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) ⇒ ⊢ (𝜑 → ((((𝑋↑2) + ((𝑀 + 𝐵) / 2)) + ((((𝑀 / 2) · 𝑋) − (𝐶 / 4)) / 𝑆)) = 0 ↔ (𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆 − 𝐼)))) | ||
Theorem | dquartlem2 25907 | Lemma for dquart 25908. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0) ⇒ ⊢ (𝜑 → ((((𝑀 + 𝐵) / 2)↑2) − (((𝐶↑2) / 4) / 𝑀)) = 𝐷) | ||
Theorem | dquart 25908 | Solve a depressed quartic equation. To eliminate 𝑆, which is the square root of a solution 𝑀 to the resolvent cubic equation, apply cubic 25904 or one of its variants. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 ∈ ℂ) & ⊢ (𝜑 → 𝑀 = ((2 · 𝑆)↑2)) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 ∈ ℂ) & ⊢ (𝜑 → (𝐼↑2) = ((-(𝑆↑2) − (𝐵 / 2)) + ((𝐶 / 4) / 𝑆))) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (((𝑀↑3) + ((2 · 𝐵) · (𝑀↑2))) + ((((𝐵↑2) − (4 · 𝐷)) · 𝑀) + -(𝐶↑2))) = 0) & ⊢ (𝜑 → 𝐽 ∈ ℂ) & ⊢ (𝜑 → (𝐽↑2) = ((-(𝑆↑2) − (𝐵 / 2)) − ((𝐶 / 4) / 𝑆))) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐵 · (𝑋↑2))) + ((𝐶 · 𝑋) + 𝐷)) = 0 ↔ ((𝑋 = (-𝑆 + 𝐼) ∨ 𝑋 = (-𝑆 − 𝐼)) ∨ (𝑋 = (𝑆 + 𝐽) ∨ 𝑋 = (𝑆 − 𝐽))))) | ||
Theorem | quart1cl 25909 | Closure lemmas for quart 25916. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) ⇒ ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) | ||
Theorem | quart1lem 25910 | Lemma for quart1 25911. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 = (𝑋 + (𝐴 / 4))) ⇒ ⊢ (𝜑 → 𝐷 = ((((𝐴↑4) / ;;256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅))) | ||
Theorem | quart1 25911 | Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑌 = (𝑋 + (𝐴 / 4))) ⇒ ⊢ (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = (((𝑌↑4) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅))) | ||
Theorem | quartlem1 25912 | Lemma for quart 25916. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝑃 ∈ ℂ) & ⊢ (𝜑 → 𝑄 ∈ ℂ) & ⊢ (𝜑 → 𝑅 ∈ ℂ) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) ⇒ ⊢ (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (;27 · -(𝑄↑2))))) | ||
Theorem | quartlem2 25913 | Closure lemmas for quart 25916. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) ⇒ ⊢ (𝜑 → (𝑈 ∈ ℂ ∧ 𝑉 ∈ ℂ ∧ 𝑊 ∈ ℂ)) | ||
Theorem | quartlem3 25914 | Closure lemmas for quart 25916. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) ⇒ ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) | ||
Theorem | quartlem4 25915 | Closure lemmas for quart 25916. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) & ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) ⇒ ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) | ||
Theorem | quart 25916 | The quartic equation, writing out all roots using square and cube root functions so that only direct substitutions remain, and we can actually claim to have a "quartic equation". Naturally, this theorem is ridiculously long (see quartfull 33027) if all the substitutions are performed. This is Metamath 100 proof #46. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) & ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) & ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) & ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) & ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) & ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) & ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) & ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) & ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) & ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) & ⊢ (𝜑 → 𝑇 ≠ 0) & ⊢ (𝜑 → 𝑀 ≠ 0) & ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) & ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((𝐸 − 𝑆) + 𝐼) ∨ 𝑋 = ((𝐸 − 𝑆) − 𝐼)) ∨ (𝑋 = ((𝐸 + 𝑆) + 𝐽) ∨ 𝑋 = ((𝐸 + 𝑆) − 𝐽))))) | ||
Syntax | casin 25917 | The arcsine function. |
class arcsin | ||
Syntax | cacos 25918 | The arccosine function. |
class arccos | ||
Syntax | catan 25919 | The arctangent function. |
class arctan | ||
Definition | df-asin 25920 | Define the arcsine function. Because sin is not a one-to-one function, the literal inverse ◡sin is not a function. Rather than attempt to find the right domain on which to restrict sin in order to get a total function, we just define it in terms of log, which we already know is total (except at 0). There are branch points at -1 and 1 (at which the function is defined), and branch cuts along the real line not between -1 and 1, which is to say (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2))))))) | ||
Definition | df-acos 25921 | Define the arccosine function. See also remarks for df-asin 25920. Since we define arccos in terms of arcsin, it shares the same branch points and cuts, namely (-∞, -1) ∪ (1, +∞). (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥))) | ||
Definition | df-atan 25922 | Define the arctangent function. See also remarks for df-asin 25920. Unlike arcsin and arccos, this function is not defined everywhere, because tan(𝑧) ≠ ±i for all 𝑧 ∈ ℂ. For all other 𝑧, there is a formula for arctan(𝑧) in terms of log, and we take that as the definition. Branch points are at ±i; branch cuts are on the pure imaginary axis not between -i and i, which is to say {𝑧 ∈ ℂ ∣ (i · 𝑧) ∈ (-∞, -1) ∪ (1, +∞)}. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | ||
Theorem | asinlem 25923 | The argument to the logarithm in df-asin 25920 is always nonzero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | ||
Theorem | asinlem2 25924 | The argument to the logarithm in df-asin 25920 has the property that replacing 𝐴 with -𝐴 in the expression gives the reciprocal. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (((i · 𝐴) + (√‘(1 − (𝐴↑2)))) · ((i · -𝐴) + (√‘(1 − (-𝐴↑2))))) = 1) | ||
Theorem | asinlem3a 25925 | Lemma for asinlem3 25926. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ≤ 0) → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
Theorem | asinlem3 25926 | The argument to the logarithm in df-asin 25920 has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | ||
Theorem | asinf 25927 | Domain and range of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arcsin:ℂ⟶ℂ | ||
Theorem | asincl 25928 | Closure for the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) ∈ ℂ) | ||
Theorem | acosf 25929 | Domain and range of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arccos:ℂ⟶ℂ | ||
Theorem | acoscl 25930 | Closure for the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) ∈ ℂ) | ||
Theorem | atandm 25931 | Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | ||
Theorem | atandm2 25932 | This form of atandm 25931 is a bit more useful for showing that the logarithms in df-atan 25922 are well-defined. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0)) | ||
Theorem | atandm3 25933 | A compact form of atandm 25931. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | ||
Theorem | atandm4 25934 | A compact form of atandm 25931. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) | ||
Theorem | atanf 25935 | Domain and range of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ arctan:(ℂ ∖ {-i, i})⟶ℂ | ||
Theorem | atancl 25936 | Closure for the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) ∈ ℂ) | ||
Theorem | asinval 25937 | Value of the arcsin function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | ||
Theorem | acosval 25938 | Value of the arccos function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (arccos‘𝐴) = ((π / 2) − (arcsin‘𝐴))) | ||
Theorem | atanval 25939 | Value of the arctan function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) | ||
Theorem | atanre 25940 | A real number is in the domain of the arctangent function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℝ → 𝐴 ∈ dom arctan) | ||
Theorem | asinneg 25941 | The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (arcsin‘-𝐴) = -(arcsin‘𝐴)) | ||
Theorem | acosneg 25942 | The negative symmetry relation of the arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (arccos‘-𝐴) = (π − (arccos‘𝐴))) | ||
Theorem | efiasin 25943 | The exponential of the arcsine function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (exp‘(i · (arcsin‘𝐴))) = ((i · 𝐴) + (√‘(1 − (𝐴↑2))))) | ||
Theorem | sinasin 25944 | The arcsine function is an inverse to sin. This is the main property that justifies the notation arcsin or sin↑-1. Because sin is not an injection, the other converse identity asinsin 25947 is only true under limited circumstances. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (sin‘(arcsin‘𝐴)) = 𝐴) | ||
Theorem | cosacos 25945 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(arccos‘𝐴)) = 𝐴) | ||
Theorem | asinsinlem 25946 | Lemma for asinsin 25947. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → 0 < (ℜ‘(exp‘(i · 𝐴)))) | ||
Theorem | asinsin 25947 | The arcsine function composed with sin is equal to the identity. This plus sinasin 25944 allow us to view sin and arcsin as inverse operations to each other. For ease of use, we have not defined precisely the correct domain of correctness of this identity; in addition to the main region described here it is also true for some points on the branch cuts, namely when 𝐴 = (π / 2) − i𝑦 for nonnegative real 𝑦 and also symmetrically at 𝐴 = i𝑦 − (π / 2). In particular, when restricted to reals this identity extends to the closed interval [-(π / 2), (π / 2)], not just the open interval (see reasinsin 25951). (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
Theorem | acoscos 25948 | The arccosine function is an inverse to cos. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)π)) → (arccos‘(cos‘𝐴)) = 𝐴) | ||
Theorem | asin1 25949 | The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (arcsin‘1) = (π / 2) | ||
Theorem | acos1 25950 | The arccosine of 1 is 0. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (arccos‘1) = 0 | ||
Theorem | reasinsin 25951 | The arcsine function composed with sin is equal to the identity. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-(π / 2)[,](π / 2)) → (arcsin‘(sin‘𝐴)) = 𝐴) | ||
Theorem | asinsinb 25952 | Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arcsin‘𝐴) = 𝐵 ↔ (sin‘𝐵) = 𝐴)) | ||
Theorem | acoscosb 25953 | Relationship between cosine and arccosine. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (0(,)π)) → ((arccos‘𝐴) = 𝐵 ↔ (cos‘𝐵) = 𝐴)) | ||
Theorem | asinbnd 25954 | The arcsine function has range within a vertical strip of the complex plane with real part between -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) | ||
Theorem | acosbnd 25955 | The arccosine function has range within a vertical strip of the complex plane with real part between 0 and π. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(arccos‘𝐴)) ∈ (0[,]π)) | ||
Theorem | asinrebnd 25956 | Bounds on the arcsine function. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ (-(π / 2)[,](π / 2))) | ||
Theorem | asinrecl 25957 | The arcsine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-1[,]1) → (arcsin‘𝐴) ∈ ℝ) | ||
Theorem | acosrecl 25958 | The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ (-1[,]1) → (arccos‘𝐴) ∈ ℝ) | ||
Theorem | cosasin 25959 | The cosine of the arcsine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (cos‘(arcsin‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
Theorem | sinacos 25960 | The sine of the arccosine of 𝐴 is √(1 − 𝐴↑2). (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ ℂ → (sin‘(arccos‘𝐴)) = (√‘(1 − (𝐴↑2)))) | ||
Theorem | atandmneg 25961 | The domain of the arctangent function is closed under negatives. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → -𝐴 ∈ dom arctan) | ||
Theorem | atanneg 25962 | The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (arctan‘-𝐴) = -(arctan‘𝐴)) | ||
Theorem | atan0 25963 | The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (arctan‘0) = 0 | ||
Theorem | atandmcj 25964 | The arctangent function distributes under conjugation. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan) | ||
Theorem | atancj 25965 | The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 25962 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))) | ||
Theorem | atanrecl 25966 | The arctangent function is real for all real inputs. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ ℝ) | ||
Theorem | efiatan 25967 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴))))) | ||
Theorem | atanlogaddlem 25968 | Lemma for atanlogadd 25969. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ 0 ≤ (ℜ‘𝐴)) → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
Theorem | atanlogadd 25969 | The rule √(𝑧𝑤) = (√𝑧)(√𝑤) is not always true on the complex numbers, but it is true when the arguments of 𝑧 and 𝑤 sum to within the interval (-π, π], so there are some cases such as this one with 𝑧 = 1 + i𝐴 and 𝑤 = 1 − i𝐴 which are true unconditionally. This result can also be stated as "√(1 + 𝑧) + √(1 − 𝑧) is analytic". (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → ((log‘(1 + (i · 𝐴))) + (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
Theorem | atanlogsublem 25970 | Lemma for atanlogsub 25971. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ 0 < (ℜ‘𝐴)) → (ℑ‘((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) ∈ (-π(,)π)) | ||
Theorem | atanlogsub 25971 | A variation on atanlogadd 25969, to show that √(1 + i𝑧) / √(1 − i𝑧) = √((1 + i𝑧) / (1 − i𝑧)) under more limited conditions. (Contributed by Mario Carneiro, 4-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))) ∈ ran log) | ||
Theorem | efiatan2 25972 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((1 + (i · 𝐴)) / (√‘(1 + (𝐴↑2))))) | ||
Theorem | 2efiatan 25973 | Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (exp‘(2 · (i · (arctan‘𝐴)))) = (((2 · i) / (𝐴 + i)) − 1)) | ||
Theorem | tanatan 25974 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (tan‘(arctan‘𝐴)) = 𝐴) | ||
Theorem | atandmtan 25975 | The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) | ||
Theorem | cosatan 25976 | The cosine of an arctangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) = (1 / (√‘(1 + (𝐴↑2))))) | ||
Theorem | cosatanne0 25977 | The arctangent function has range contained in the domain of the tangent. (Contributed by Mario Carneiro, 3-Apr-2015.) |
⊢ (𝐴 ∈ dom arctan → (cos‘(arctan‘𝐴)) ≠ 0) | ||
Theorem | atantan 25978 | The arctangent function is an inverse to tan. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (arctan‘(tan‘𝐴)) = 𝐴) | ||
Theorem | atantanb 25979 | Relationship between tangent and arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ dom arctan ∧ 𝐵 ∈ ℂ ∧ (ℜ‘𝐵) ∈ (-(π / 2)(,)(π / 2))) → ((arctan‘𝐴) = 𝐵 ↔ (tan‘𝐵) = 𝐴)) | ||
Theorem | atanbndlem 25980 | Lemma for atanbnd 25981. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (𝐴 ∈ ℝ+ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
Theorem | atanbnd 25981 | The arctangent function is bounded by π / 2 on the reals. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ (𝐴 ∈ ℝ → (arctan‘𝐴) ∈ (-(π / 2)(,)(π / 2))) | ||
Theorem | atanord 25982 | The arctangent function is strictly increasing. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (arctan‘𝐴) < (arctan‘𝐵))) | ||
Theorem | atan1 25983 | The arctangent of 1 is π / 4. (Contributed by Mario Carneiro, 2-Apr-2015.) |
⊢ (arctan‘1) = (π / 4) | ||
Theorem | bndatandm 25984 | A point in the open unit disk is in the domain of the arctangent. (Contributed by Mario Carneiro, 5-Apr-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → 𝐴 ∈ dom arctan) | ||
Theorem | atans 25985* | The "domain of continuity" of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ∈ 𝐷)) | ||
Theorem | atans2 25986* | It suffices to show that 1 − i𝐴 and 1 + i𝐴 are in the continuity domain of log to show that 𝐴 is in the continuity domain of arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (𝐴 ∈ 𝑆 ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ∈ 𝐷 ∧ (1 + (i · 𝐴)) ∈ 𝐷)) | ||
Theorem | atansopn 25987* | The domain of continuity of the arctangent is an open set. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ∈ (TopOpen‘ℂfld) | ||
Theorem | atansssdm 25988* | The domain of continuity of the arctangent is a subset of the actual domain of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ 𝑆 ⊆ dom arctan | ||
Theorem | ressatans 25989* | The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ ℝ ⊆ 𝑆 | ||
Theorem | dvatan 25990* | The derivative of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (ℂ D (arctan ↾ 𝑆)) = (𝑥 ∈ 𝑆 ↦ (1 / (1 + (𝑥↑2)))) | ||
Theorem | atancn 25991* | The arctangent is a continuous function. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐷 = (ℂ ∖ (-∞(,]0)) & ⊢ 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ⇒ ⊢ (arctan ↾ 𝑆) ∈ (𝑆–cn→ℂ) | ||
Theorem | atantayl 25992* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (((i · ((-i↑𝑛) − (i↑𝑛))) / 2) · ((𝐴↑𝑛) / 𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
Theorem | atantayl2 25993* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 1-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(2 ∥ 𝑛, 0, ((-1↑((𝑛 − 1) / 2)) · ((𝐴↑𝑛) / 𝑛)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq1( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
Theorem | atantayl3 25994* | The Taylor series for arctan(𝐴). (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) · ((𝐴↑((2 · 𝑛) + 1)) / ((2 · 𝑛) + 1)))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ (abs‘𝐴) < 1) → seq0( + , 𝐹) ⇝ (arctan‘𝐴)) | ||
Theorem | leibpilem1 25995 | Lemma for leibpi 25997. (Contributed by Mario Carneiro, 7-Apr-2015.) (Proof shortened by Steven Nguyen, 23-Mar-2023.) |
⊢ ((𝑁 ∈ ℕ0 ∧ (¬ 𝑁 = 0 ∧ ¬ 2 ∥ 𝑁)) → (𝑁 ∈ ℕ ∧ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
Theorem | leibpilem2 25996* | The Leibniz formula for π. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) & ⊢ 𝐺 = (𝑘 ∈ ℕ0 ↦ if((𝑘 = 0 ∨ 2 ∥ 𝑘), 0, ((-1↑((𝑘 − 1) / 2)) / 𝑘))) & ⊢ 𝐴 ∈ V ⇒ ⊢ (seq0( + , 𝐹) ⇝ 𝐴 ↔ seq0( + , 𝐺) ⇝ 𝐴) | ||
Theorem | leibpi 25997 | The Leibniz formula for π. This proof depends on three main facts: (1) the series 𝐹 is convergent, because it is an alternating series (iseralt 15324). (2) Using leibpilem2 25996 to rewrite the series as a power series, it is the 𝑥 = 1 special case of the Taylor series for arctan (atantayl2 25993). (3) Although we cannot directly plug 𝑥 = 1 into atantayl2 25993, Abel's theorem (abelth2 25506) says that the limit along any sequence converging to 1, such as 1 − 1 / 𝑛, of the power series converges to the power series extended to 1, and then since arctan is continuous at 1 (atancn 25991) we get the desired result. This is Metamath 100 proof #26. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((-1↑𝑛) / ((2 · 𝑛) + 1))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (π / 4) | ||
Theorem | leibpisum 25998 | The Leibniz formula for π. This version of leibpi 25997 looks nicer but does not assert that the series is convergent so is not as practically useful. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ Σ𝑛 ∈ ℕ0 ((-1↑𝑛) / ((2 · 𝑛) + 1)) = (π / 4) | ||
Theorem | log2cnv 25999 | Using the Taylor series for arctan(i / 3), produce a rapidly convergent series for log2. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ⇒ ⊢ seq0( + , 𝐹) ⇝ (log‘2) | ||
Theorem | log2tlbnd 26000* | Bound the error term in the series of log2cnv 25999. (Contributed by Mario Carneiro, 7-Apr-2015.) |
⊢ (𝑁 ∈ ℕ0 → ((log‘2) − Σ𝑛 ∈ (0...(𝑁 − 1))(2 / ((3 · ((2 · 𝑛) + 1)) · (9↑𝑛)))) ∈ (0[,](3 / ((4 · ((2 · 𝑁) + 1)) · (9↑𝑁))))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |