![]() |
Metamath
Proof Explorer Theorem List (p. 260 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dvmptres3 25901* | Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015.) |
β’ π½ = (TopOpenββfld) & β’ (π β π β {β, β}) & β’ (π β π β π½) & β’ (π β (π β© π) = π) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) | ||
Theorem | dvmptid 25902* | Function-builder for derivative: derivative of the identity. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) β β’ (π β (π D (π₯ β π β¦ π₯)) = (π₯ β π β¦ 1)) | ||
Theorem | dvmptc 25903* | Function-builder for derivative: derivative of a constant. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ (π β π΄ β β) β β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ 0)) | ||
Theorem | dvmptcl 25904* | Closure lemma for dvmptcmul 25909 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ ((π β§ π₯ β π) β π΅ β β) | ||
Theorem | dvmptadd 25905* | Function-builder for derivative, addition rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ ((π β§ π₯ β π) β πΆ β β) & β’ ((π β§ π₯ β π) β π· β π) & β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ π·)) β β’ (π β (π D (π₯ β π β¦ (π΄ + πΆ))) = (π₯ β π β¦ (π΅ + π·))) | ||
Theorem | dvmptmul 25906* | Function-builder for derivative, product rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ ((π β§ π₯ β π) β πΆ β β) & β’ ((π β§ π₯ β π) β π· β π) & β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ π·)) β β’ (π β (π D (π₯ β π β¦ (π΄ Β· πΆ))) = (π₯ β π β¦ ((π΅ Β· πΆ) + (π· Β· π΄)))) | ||
Theorem | dvmptres2 25907* | Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β π β π) & β’ π½ = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) & β’ (π β ((intβπ½)βπ) = π) β β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) | ||
Theorem | dvmptres 25908* | Function-builder for derivative: restrict a derivative to an open subset. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β π β π) & β’ π½ = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) & β’ (π β π β π½) β β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) | ||
Theorem | dvmptcmul 25909* | Function-builder for derivative, product rule for constant multiplier. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β πΆ β β) β β’ (π β (π D (π₯ β π β¦ (πΆ Β· π΄))) = (π₯ β π β¦ (πΆ Β· π΅))) | ||
Theorem | dvmptdivc 25910* | Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β πΆ β β) & β’ (π β πΆ β 0) β β’ (π β (π D (π₯ β π β¦ (π΄ / πΆ))) = (π₯ β π β¦ (π΅ / πΆ))) | ||
Theorem | dvmptneg 25911* | Function-builder for derivative, product rule for negatives. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ (π β (π D (π₯ β π β¦ -π΄)) = (π₯ β π β¦ -π΅)) | ||
Theorem | dvmptsub 25912* | Function-builder for derivative, subtraction rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ ((π β§ π₯ β π) β πΆ β β) & β’ ((π β§ π₯ β π) β π· β π) & β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ π·)) β β’ (π β (π D (π₯ β π β¦ (π΄ β πΆ))) = (π₯ β π β¦ (π΅ β π·))) | ||
Theorem | dvmptcj 25913* | Function-builder for derivative, conjugate rule. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ (π β (β D (π₯ β π β¦ (ββπ΄))) = (π₯ β π β¦ (ββπ΅))) | ||
Theorem | dvmptre 25914* | Function-builder for derivative, real part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ (π β (β D (π₯ β π β¦ (ββπ΄))) = (π₯ β π β¦ (ββπ΅))) | ||
Theorem | dvmptim 25915* | Function-builder for derivative, imaginary part. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ (π β (β D (π₯ β π β¦ (ββπ΄))) = (π₯ β π β¦ (ββπ΅))) | ||
Theorem | dvmptntr 25916* | Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
β’ (π β π β β) & β’ (π β π β π) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ π½ = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) & β’ (π β ((intβπ½)βπ) = π) β β’ (π β (π D (π₯ β π β¦ π΄)) = (π D (π₯ β π β¦ π΄))) | ||
Theorem | dvmptco 25917* | Function-builder for derivative, chain rule. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ (π β π β {β, β}) & β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β π) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π¦ β π) β πΆ β β) & β’ ((π β§ π¦ β π) β π· β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π β (π D (π¦ β π β¦ πΆ)) = (π¦ β π β¦ π·)) & β’ (π¦ = π΄ β πΆ = πΈ) & β’ (π¦ = π΄ β π· = πΉ) β β’ (π β (π D (π₯ β π β¦ πΈ)) = (π₯ β π β¦ (πΉ Β· π΅))) | ||
Theorem | dvrecg 25918* | Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β {β, β}) & β’ (π β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β (β β {0})) & β’ ((π β§ π₯ β π) β πΆ β π) & β’ (π β (π D (π₯ β π β¦ π΅)) = (π₯ β π β¦ πΆ)) β β’ (π β (π D (π₯ β π β¦ (π΄ / π΅))) = (π₯ β π β¦ -((π΄ Β· πΆ) / (π΅β2)))) | ||
Theorem | dvmptdiv 25919* | Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
β’ (π β π β {β, β}) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ ((π β§ π₯ β π) β πΆ β (β β {0})) & β’ ((π β§ π₯ β π) β π· β β) & β’ (π β (π D (π₯ β π β¦ πΆ)) = (π₯ β π β¦ π·)) β β’ (π β (π D (π₯ β π β¦ (π΄ / πΆ))) = (π₯ β π β¦ (((π΅ Β· πΆ) β (π· Β· π΄)) / (πΆβ2)))) | ||
Theorem | dvmptfsum 25920* | Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
β’ π½ = (πΎ βΎt π) & β’ πΎ = (TopOpenββfld) & β’ (π β π β {β, β}) & β’ (π β π β π½) & β’ (π β πΌ β Fin) & β’ ((π β§ π β πΌ β§ π₯ β π) β π΄ β β) & β’ ((π β§ π β πΌ β§ π₯ β π) β π΅ β β) & β’ ((π β§ π β πΌ) β (π D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ (π β (π D (π₯ β π β¦ Ξ£π β πΌ π΄)) = (π₯ β π β¦ Ξ£π β πΌ π΅)) | ||
Theorem | dvcnvlem 25921 | Lemma for dvcnvre 25965. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ π½ = (TopOpenββfld) & β’ πΎ = (π½ βΎt π) & β’ (π β π β {β, β}) & β’ (π β π β πΎ) & β’ (π β πΉ:πβ1-1-ontoβπ) & β’ (π β β‘πΉ β (πβcnβπ)) & β’ (π β dom (π D πΉ) = π) & β’ (π β Β¬ 0 β ran (π D πΉ)) & β’ (π β πΆ β π) β β’ (π β (πΉβπΆ)(π D β‘πΉ)(1 / ((π D πΉ)βπΆ))) | ||
Theorem | dvcnv 25922* | A weak version of dvcnvre 25965, valid for both real and complex domains but under the hypothesis that the inverse function is already known to be continuous, and the image set is known to be open. A more advanced proof can show that these conditions are unnecessary. (Contributed by Mario Carneiro, 25-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ π½ = (TopOpenββfld) & β’ πΎ = (π½ βΎt π) & β’ (π β π β {β, β}) & β’ (π β π β πΎ) & β’ (π β πΉ:πβ1-1-ontoβπ) & β’ (π β β‘πΉ β (πβcnβπ)) & β’ (π β dom (π D πΉ) = π) & β’ (π β Β¬ 0 β ran (π D πΉ)) β β’ (π β (π D β‘πΉ) = (π₯ β π β¦ (1 / ((π D πΉ)β(β‘πΉβπ₯))))) | ||
Theorem | dvexp3 25923* | Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.) |
β’ (π β β€ β (β D (π₯ β (β β {0}) β¦ (π₯βπ))) = (π₯ β (β β {0}) β¦ (π Β· (π₯β(π β 1))))) | ||
Theorem | dveflem 25924 | Derivative of the exponential function at 0. The key step in the proof is eftlub 16080, to show that abs(exp(π₯) β 1 β π₯) β€ abs(π₯)β2 Β· (3 / 4). (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
β’ 0(β D exp)1 | ||
Theorem | dvef 25925 | Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Proof shortened by Mario Carneiro, 10-Feb-2015.) |
β’ (β D exp) = exp | ||
Theorem | dvsincos 25926 | Derivative of the sine and cosine functions. (Contributed by Mario Carneiro, 21-May-2016.) |
β’ ((β D sin) = cos β§ (β D cos) = (π₯ β β β¦ -(sinβπ₯))) | ||
Theorem | dvsin 25927 | Derivative of the sine function. (Contributed by Mario Carneiro, 21-May-2016.) |
β’ (β D sin) = cos | ||
Theorem | dvcos 25928 | Derivative of the cosine function. (Contributed by Mario Carneiro, 21-May-2016.) |
β’ (β D cos) = (π₯ β β β¦ -(sinβπ₯)) | ||
Theorem | dvferm1lem 25929* | Lemma for dvferm 25933. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β β) & β’ (π β π β (π΄(,)π΅)) & β’ (π β (π΄(,)π΅) β π) & β’ (π β π β dom (β D πΉ)) & β’ (π β βπ¦ β (π(,)π΅)(πΉβπ¦) β€ (πΉβπ)) & β’ (π β 0 < ((β D πΉ)βπ)) & β’ (π β π β β+) & β’ (π β βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < ((β D πΉ)βπ))) & β’ π = ((π + if(π΅ β€ (π + π), π΅, (π + π))) / 2) β β’ Β¬ π | ||
Theorem | dvferm1 25930* | One-sided version of dvferm 25933. A point π which is the local maximum of its right neighborhood has derivative at most zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β β) & β’ (π β π β (π΄(,)π΅)) & β’ (π β (π΄(,)π΅) β π) & β’ (π β π β dom (β D πΉ)) & β’ (π β βπ¦ β (π(,)π΅)(πΉβπ¦) β€ (πΉβπ)) β β’ (π β ((β D πΉ)βπ) β€ 0) | ||
Theorem | dvferm2lem 25931* | Lemma for dvferm 25933. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β β) & β’ (π β π β (π΄(,)π΅)) & β’ (π β (π΄(,)π΅) β π) & β’ (π β π β dom (β D πΉ)) & β’ (π β βπ¦ β (π΄(,)π)(πΉβπ¦) β€ (πΉβπ)) & β’ (π β ((β D πΉ)βπ) < 0) & β’ (π β π β β+) & β’ (π β βπ§ β (π β {π})((π§ β π β§ (absβ(π§ β π)) < π) β (absβ((((πΉβπ§) β (πΉβπ)) / (π§ β π)) β ((β D πΉ)βπ))) < -((β D πΉ)βπ))) & β’ π = ((if(π΄ β€ (π β π), (π β π), π΄) + π) / 2) β β’ Β¬ π | ||
Theorem | dvferm2 25932* | One-sided version of dvferm 25933. A point π which is the local maximum of its left neighborhood has derivative at least zero. (Contributed by Mario Carneiro, 24-Feb-2015.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β β) & β’ (π β π β (π΄(,)π΅)) & β’ (π β (π΄(,)π΅) β π) & β’ (π β π β dom (β D πΉ)) & β’ (π β βπ¦ β (π΄(,)π)(πΉβπ¦) β€ (πΉβπ)) β β’ (π β 0 β€ ((β D πΉ)βπ)) | ||
Theorem | dvferm 25933* | Fermat's theorem on stationary points. A point π which is a local maximum has derivative equal to zero. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ (π β πΉ:πβΆβ) & β’ (π β π β β) & β’ (π β π β (π΄(,)π΅)) & β’ (π β (π΄(,)π΅) β π) & β’ (π β π β dom (β D πΉ)) & β’ (π β βπ¦ β (π΄(,)π΅)(πΉβπ¦) β€ (πΉβπ)) β β’ (π β ((β D πΉ)βπ) = 0) | ||
Theorem | rollelem 25934* | Lemma for rolle 25935. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β βπ¦ β (π΄[,]π΅)(πΉβπ¦) β€ (πΉβπ)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β Β¬ π β {π΄, π΅}) β β’ (π β βπ₯ β (π΄(,)π΅)((β D πΉ)βπ₯) = 0) | ||
Theorem | rolle 25935* | Rolle's theorem. If πΉ is a real continuous function on [π΄, π΅] which is differentiable on (π΄, π΅), and πΉ(π΄) = πΉ(π΅), then there is some π₯ β (π΄, π΅) such that (β D πΉ)βπ₯ = 0. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β (πΉβπ΄) = (πΉβπ΅)) β β’ (π β βπ₯ β (π΄(,)π΅)((β D πΉ)βπ₯) = 0) | ||
Theorem | cmvth 25936* | Cauchy's Mean Value Theorem. If πΉ, πΊ are real continuous functions on [π΄, π΅] differentiable on (π΄, π΅), then there is some π₯ β (π΄, π΅) such that πΉ' (π₯) / πΊ' (π₯) = (πΉ(π΄) β πΉ(π΅)) / (πΊ(π΄) β πΊ(π΅)). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.) Avoid ax-mulf 11213. (Revised by GG, 16-Mar-2025.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β πΊ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) β β’ (π β βπ₯ β (π΄(,)π΅)(((πΉβπ΅) β (πΉβπ΄)) Β· ((β D πΊ)βπ₯)) = (((πΊβπ΅) β (πΊβπ΄)) Β· ((β D πΉ)βπ₯))) | ||
Theorem | cmvthOLD 25937* | Obsolete version of cmvth 25936 as of 16-Apr-2025. (Contributed by Mario Carneiro, 29-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β πΊ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) β β’ (π β βπ₯ β (π΄(,)π΅)(((πΉβπ΅) β (πΉβπ΄)) Β· ((β D πΊ)βπ₯)) = (((πΊβπ΅) β (πΊβπ΄)) Β· ((β D πΉ)βπ₯))) | ||
Theorem | mvth 25938* | The Mean Value Theorem. If πΉ is a real continuous function on [π΄, π΅] which is differentiable on (π΄, π΅), then there is some π₯ β (π΄, π΅) such that (β D πΉ)βπ₯ is equal to the average slope over [π΄, π΅]. This is Metamath 100 proof #75. (Contributed by Mario Carneiro, 1-Sep-2014.) (Proof shortened by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) β β’ (π β βπ₯ β (π΄(,)π΅)((β D πΉ)βπ₯) = (((πΉβπ΅) β (πΉβπ΄)) / (π΅ β π΄))) | ||
Theorem | dvlip 25939* | A function with derivative bounded by π is π-Lipschitz continuous. (Contributed by Mario Carneiro, 3-Mar-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β π β β) & β’ ((π β§ π₯ β (π΄(,)π΅)) β (absβ((β D πΉ)βπ₯)) β€ π) β β’ ((π β§ (π β (π΄[,]π΅) β§ π β (π΄[,]π΅))) β (absβ((πΉβπ) β (πΉβπ))) β€ (π Β· (absβ(π β π)))) | ||
Theorem | dvlipcn 25940* | A complex function with derivative bounded by π on an open ball is π-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015.) |
β’ (π β π β β) & β’ (π β πΉ:πβΆβ) & β’ (π β π΄ β β) & β’ (π β π β β*) & β’ π΅ = (π΄(ballβ(abs β β ))π ) & β’ (π β π΅ β dom (β D πΉ)) & β’ (π β π β β) & β’ ((π β§ π₯ β π΅) β (absβ((β D πΉ)βπ₯)) β€ π) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (absβ((πΉβπ) β (πΉβπ))) β€ (π Β· (absβ(π β π)))) | ||
Theorem | dvlip2 25941* | Combine the results of dvlip 25939 and dvlipcn 25940 into one. (Contributed by Mario Carneiro, 18-Mar-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ (π β π β {β, β}) & β’ π½ = ((abs β β ) βΎ (π Γ π)) & β’ (π β π β π) & β’ (π β πΉ:πβΆβ) & β’ (π β π΄ β π) & β’ (π β π β β*) & β’ π΅ = (π΄(ballβπ½)π ) & β’ (π β π΅ β dom (π D πΉ)) & β’ (π β π β β) & β’ ((π β§ π₯ β π΅) β (absβ((π D πΉ)βπ₯)) β€ π) β β’ ((π β§ (π β π΅ β§ π β π΅)) β (absβ((πΉβπ) β (πΉβπ))) β€ (π Β· (absβ(π β π)))) | ||
Theorem | c1liplem1 25942* | Lemma for c1lip1 25943. (Contributed by Stefan O'Rear, 15-Nov-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β πΉ β (β βpm β)) & β’ (π β ((β D πΉ) βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) & β’ (π β (πΉ βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) & β’ πΎ = sup((abs β ((β D πΉ) β (π΄[,]π΅))), β, < ) β β’ (π β (πΎ β β β§ βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(π₯ < π¦ β (absβ((πΉβπ¦) β (πΉβπ₯))) β€ (πΎ Β· (absβ(π¦ β π₯)))))) | ||
Theorem | c1lip1 25943* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β (β βpm β)) & β’ (π β ((β D πΉ) βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) & β’ (π β (πΉ βΎ (π΄[,]π΅)) β ((π΄[,]π΅)βcnββ)) β β’ (π β βπ β β βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(absβ((πΉβπ¦) β (πΉβπ₯))) β€ (π Β· (absβ(π¦ β π₯)))) | ||
Theorem | c1lip2 25944* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((πCπββ)β1)) & β’ (π β ran πΉ β β) & β’ (π β (π΄[,]π΅) β dom πΉ) β β’ (π β βπ β β βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(absβ((πΉβπ¦) β (πΉβπ₯))) β€ (π Β· (absβ(π¦ β π₯)))) | ||
Theorem | c1lip3 25945* | C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β (πΉ βΎ β) β ((πCπββ)β1)) & β’ (π β (πΉ β β) β β) & β’ (π β (π΄[,]π΅) β dom πΉ) β β’ (π β βπ β β βπ₯ β (π΄[,]π΅)βπ¦ β (π΄[,]π΅)(absβ((πΉβπ¦) β (πΉβπ₯))) β€ (π Β· (absβ(π¦ β π₯)))) | ||
Theorem | dveq0 25946 | If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ) = ((π΄(,)π΅) Γ {0})) β β’ (π β πΉ = ((π΄[,]π΅) Γ {(πΉβπ΄)})) | ||
Theorem | dv11cn 25947 | Two functions defined on a ball whose derivatives are the same and which are equal at any given point πΆ in the ball must be equal everywhere. (Contributed by Mario Carneiro, 31-Mar-2015.) |
β’ π = (π΄(ballβ(abs β β ))π ) & β’ (π β π΄ β β) & β’ (π β π β β*) & β’ (π β πΉ:πβΆβ) & β’ (π β πΊ:πβΆβ) & β’ (π β dom (β D πΉ) = π) & β’ (π β (β D πΉ) = (β D πΊ)) & β’ (π β πΆ β π) & β’ (π β (πΉβπΆ) = (πΊβπΆ)) β β’ (π β πΉ = πΊ) | ||
Theorem | dvgt0lem1 25948 | Lemma for dvgt0 25950 and dvlt0 25951. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆπ) β β’ (((π β§ (π β (π΄[,]π΅) β§ π β (π΄[,]π΅))) β§ π < π) β (((πΉβπ) β (πΉβπ)) / (π β π)) β π) | ||
Theorem | dvgt0lem2 25949* | Lemma for dvgt0 25950 and dvlt0 25951. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆπ) & β’ π Or β & β’ (((π β§ (π₯ β (π΄[,]π΅) β§ π¦ β (π΄[,]π΅))) β§ π₯ < π¦) β (πΉβπ₯)π(πΉβπ¦)) β β’ (π β πΉ Isom < , π ((π΄[,]π΅), ran πΉ)) | ||
Theorem | dvgt0 25950 | A function on a closed interval with positive derivative is increasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆβ+) β β’ (π β πΉ Isom < , < ((π΄[,]π΅), ran πΉ)) | ||
Theorem | dvlt0 25951 | A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆ(-β(,)0)) β β’ (π β πΉ Isom < , β‘ < ((π΄[,]π΅), ran πΉ)) | ||
Theorem | dvge0 25952 | A function on a closed interval with nonnegative derivative is weakly increasing. (Contributed by Mario Carneiro, 30-Apr-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ):(π΄(,)π΅)βΆ(0[,)+β)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β€ π) β β’ (π β (πΉβπ) β€ (πΉβπ)) | ||
Theorem | dvle 25953* | If π΄(π₯), πΆ(π₯) are differentiable functions and π΄β β€ πΆβ, then for π₯ β€ π¦, π΄(π¦) β π΄(π₯) β€ πΆ(π¦) β πΆ(π₯). (Contributed by Mario Carneiro, 16-May-2016.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π β (π₯ β (π[,]π) β¦ πΆ) β ((π[,]π)βcnββ)) & β’ (π β (β D (π₯ β (π(,)π) β¦ πΆ)) = (π₯ β (π(,)π) β¦ π·)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β€ π·) & β’ (π β π β (π[,]π)) & β’ (π β π β (π[,]π)) & β’ (π β π β€ π) & β’ (π₯ = π β π΄ = π) & β’ (π₯ = π β πΆ = π) & β’ (π₯ = π β π΄ = π ) & β’ (π₯ = π β πΆ = π) β β’ (π β (π β π) β€ (π β π)) | ||
Theorem | dvivthlem1 25954* | Lemma for dvivth 25956. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β π β (π΄(,)π΅)) & β’ (π β π β (π΄(,)π΅)) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β π < π) & β’ (π β πΆ β (((β D πΉ)βπ)[,]((β D πΉ)βπ))) & β’ πΊ = (π¦ β (π΄(,)π΅) β¦ ((πΉβπ¦) β (πΆ Β· π¦))) β β’ (π β βπ₯ β (π[,]π)((β D πΉ)βπ₯) = πΆ) | ||
Theorem | dvivthlem2 25955* | Lemma for dvivth 25956. (Contributed by Mario Carneiro, 20-Feb-2015.) |
β’ (π β π β (π΄(,)π΅)) & β’ (π β π β (π΄(,)π΅)) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β π < π) & β’ (π β πΆ β (((β D πΉ)βπ)[,]((β D πΉ)βπ))) & β’ πΊ = (π¦ β (π΄(,)π΅) β¦ ((πΉβπ¦) β (πΆ Β· π¦))) β β’ (π β πΆ β ran (β D πΉ)) | ||
Theorem | dvivth 25956 | Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc 25400 does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β π β (π΄(,)π΅)) & β’ (π β π β (π΄(,)π΅)) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) β β’ (π β (((β D πΉ)βπ)[,]((β D πΉ)βπ)) β ran (β D πΉ)) | ||
Theorem | dvne0 25957 | A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β Β¬ 0 β ran (β D πΉ)) β β’ (π β (πΉ Isom < , < ((π΄[,]π΅), ran πΉ) β¨ πΉ Isom < , β‘ < ((π΄[,]π΅), ran πΉ))) | ||
Theorem | dvne0f1 25958 | A function on a closed interval with nonzero derivative is one-to-one. (Contributed by Mario Carneiro, 19-Feb-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β Β¬ 0 β ran (β D πΉ)) β β’ (π β πΉ:(π΄[,]π΅)β1-1ββ) | ||
Theorem | lhop1lem 25959* | Lemma for lhop1 25960. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β*) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β πΊ:(π΄(,)π΅)βΆβ) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) & β’ (π β 0 β (πΉ limβ π΄)) & β’ (π β 0 β (πΊ limβ π΄)) & β’ (π β Β¬ 0 β ran πΊ) & β’ (π β Β¬ 0 β ran (β D πΊ)) & β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΄)) & β’ (π β πΈ β β+) & β’ (π β π· β β) & β’ (π β π· β€ π΅) & β’ (π β π β (π΄(,)π·)) & β’ (π β βπ‘ β (π΄(,)π·)(absβ((((β D πΉ)βπ‘) / ((β D πΊ)βπ‘)) β πΆ)) < πΈ) & β’ π = (π΄ + (π / 2)) β β’ (π β (absβ(((πΉβπ) / (πΊβπ)) β πΆ)) < (2 Β· πΈ)) | ||
Theorem | lhop1 25960* | L'HΓ΄pital's Rule for limits from the right. If πΉ and πΊ are differentiable real functions on (π΄, π΅), and πΉ and πΊ both approach 0 at π΄, and πΊ(π₯) and πΊ' (π₯) are not zero on (π΄, π΅), and the limit of πΉ' (π₯) / πΊ' (π₯) at π΄ is πΆ, then the limit πΉ(π₯) / πΊ(π₯) at π΄ also exists and equals πΆ. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β*) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β πΊ:(π΄(,)π΅)βΆβ) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) & β’ (π β 0 β (πΉ limβ π΄)) & β’ (π β 0 β (πΊ limβ π΄)) & β’ (π β Β¬ 0 β ran πΊ) & β’ (π β Β¬ 0 β ran (β D πΊ)) & β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΄)) β β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ ((πΉβπ§) / (πΊβπ§))) limβ π΄)) | ||
Theorem | lhop2 25961* | L'HΓ΄pital's Rule for limits from the left. If πΉ and πΊ are differentiable real functions on (π΄, π΅), and πΉ and πΊ both approach 0 at π΅, and πΊ(π₯) and πΊ' (π₯) are not zero on (π΄, π΅), and the limit of πΉ' (π₯) / πΊ' (π₯) at π΅ is πΆ, then the limit πΉ(π₯) / πΊ(π₯) at π΅ also exists and equals πΆ. (Contributed by Mario Carneiro, 29-Dec-2016.) |
β’ (π β π΄ β β*) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ:(π΄(,)π΅)βΆβ) & β’ (π β πΊ:(π΄(,)π΅)βΆβ) & β’ (π β dom (β D πΉ) = (π΄(,)π΅)) & β’ (π β dom (β D πΊ) = (π΄(,)π΅)) & β’ (π β 0 β (πΉ limβ π΅)) & β’ (π β 0 β (πΊ limβ π΅)) & β’ (π β Β¬ 0 β ran πΊ) & β’ (π β Β¬ 0 β ran (β D πΊ)) & β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΅)) β β’ (π β πΆ β ((π§ β (π΄(,)π΅) β¦ ((πΉβπ§) / (πΊβπ§))) limβ π΅)) | ||
Theorem | lhop 25962* | L'HΓ΄pital's Rule. If πΌ is an open set of the reals, πΉ and πΊ are real functions on π΄ containing all of πΌ except possibly π΅, which are differentiable everywhere on πΌ β {π΅}, πΉ and πΊ both approach 0, and the limit of πΉ' (π₯) / πΊ' (π₯) at π΅ is πΆ, then the limit πΉ(π₯) / πΊ(π₯) at π΅ also exists and equals πΆ. This is Metamath 100 proof #64. (Contributed by Mario Carneiro, 30-Dec-2016.) |
β’ (π β π΄ β β) & β’ (π β πΉ:π΄βΆβ) & β’ (π β πΊ:π΄βΆβ) & β’ (π β πΌ β (topGenβran (,))) & β’ (π β π΅ β πΌ) & β’ π· = (πΌ β {π΅}) & β’ (π β π· β dom (β D πΉ)) & β’ (π β π· β dom (β D πΊ)) & β’ (π β 0 β (πΉ limβ π΅)) & β’ (π β 0 β (πΊ limβ π΅)) & β’ (π β Β¬ 0 β (πΊ β π·)) & β’ (π β Β¬ 0 β ((β D πΊ) β π·)) & β’ (π β πΆ β ((π§ β π· β¦ (((β D πΉ)βπ§) / ((β D πΊ)βπ§))) limβ π΅)) β β’ (π β πΆ β ((π§ β π· β¦ ((πΉβπ§) / (πΊβπ§))) limβ π΅)) | ||
Theorem | dvcnvrelem1 25963 | Lemma for dvcnvre 25965. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β πΉ β (πβcnββ)) & β’ (π β dom (β D πΉ) = π) & β’ (π β Β¬ 0 β ran (β D πΉ)) & β’ (π β πΉ:πβ1-1-ontoβπ) & β’ (π β πΆ β π) & β’ (π β π β β+) & β’ (π β ((πΆ β π )[,](πΆ + π )) β π) β β’ (π β (πΉβπΆ) β ((intβ(topGenβran (,)))β(πΉ β ((πΆ β π )[,](πΆ + π ))))) | ||
Theorem | dvcnvrelem2 25964 | Lemma for dvcnvre 25965. (Contributed by Mario Carneiro, 19-Feb-2015.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ (π β πΉ β (πβcnββ)) & β’ (π β dom (β D πΉ) = π) & β’ (π β Β¬ 0 β ran (β D πΉ)) & β’ (π β πΉ:πβ1-1-ontoβπ) & β’ (π β πΆ β π) & β’ (π β π β β+) & β’ (π β ((πΆ β π )[,](πΆ + π )) β π) & β’ π = (topGenβran (,)) & β’ π½ = (TopOpenββfld) & β’ π = (π½ βΎt π) & β’ π = (π½ βΎt π) β β’ (π β ((πΉβπΆ) β ((intβπ)βπ) β§ β‘πΉ β ((π CnP π)β(πΉβπΆ)))) | ||
Theorem | dvcnvre 25965* | The derivative rule for inverse functions. If πΉ is a continuous and differentiable bijective function from π to π which never has derivative 0, then β‘πΉ is also differentiable, and its derivative is the reciprocal of the derivative of πΉ. (Contributed by Mario Carneiro, 24-Feb-2015.) |
β’ (π β πΉ β (πβcnββ)) & β’ (π β dom (β D πΉ) = π) & β’ (π β Β¬ 0 β ran (β D πΉ)) & β’ (π β πΉ:πβ1-1-ontoβπ) β β’ (π β (β D β‘πΉ) = (π₯ β π β¦ (1 / ((β D πΉ)β(β‘πΉβπ₯))))) | ||
Theorem | dvcvx 25966 | A real function with strictly increasing derivative is strictly convex. (Contributed by Mario Carneiro, 20-Jun-2015.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ < π΅) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) & β’ (π β (β D πΉ) Isom < , < ((π΄(,)π΅), π)) & β’ (π β π β (0(,)1)) & β’ πΆ = ((π Β· π΄) + ((1 β π) Β· π΅)) β β’ (π β (πΉβπΆ) < ((π Β· (πΉβπ΄)) + ((1 β π) Β· (πΉβπ΅)))) | ||
Theorem | dvfsumle 25967* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) Avoid ax-mulf 11213. (Revised by GG, 16-Mar-2025.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β π β€ π΅) β β’ (π β Ξ£π β (π..^π)π β€ (π· β πΆ)) | ||
Theorem | dvfsumleOLD 25968* | Obsolete version of dvfsumle 25967 as of 17-Apr-2025. (Contributed by Mario Carneiro, 14-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β π β€ π΅) β β’ (π β Ξ£π β (π..^π)π β€ (π· β πΆ)) | ||
Theorem | dvfsumge 25969* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β π΅ β€ π) β β’ (π β (π· β πΆ) β€ Ξ£π β (π..^π)π) | ||
Theorem | dvfsumabs 25970* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.) |
β’ (π β π β (β€β₯βπ)) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ ((π β§ π₯ β (π(,)π)) β π΅ β π) & β’ (π β (β D (π₯ β (π(,)π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π₯ = π β π΄ = πΆ) & β’ (π₯ = π β π΄ = π·) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ π β (π..^π)) β π β β) & β’ ((π β§ (π β (π..^π) β§ π₯ β (π(,)(π + 1)))) β (absβ(π β π΅)) β€ π) β β’ (π β (absβ(Ξ£π β (π..^π)π β (π· β πΆ))) β€ Ξ£π β (π..^π)π) | ||
Theorem | dvmptrecl 25971* | Real closure of a derivative. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) β β’ ((π β§ π₯ β π) β π΅ β β) | ||
Theorem | dvfsumrlimf 25972* | Lemma for dvfsumrlim 25979. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) β β’ (π β πΊ:πβΆβ) | ||
Theorem | dvfsumlem1 25973* | Lemma for dvfsumrlim 25979. (Contributed by Mario Carneiro, 17-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β π β€ ((ββπ) + 1)) β β’ (π β (π»βπ) = ((((π β (ββπ)) Β· β¦π / π₯β¦π΅) β β¦π / π₯β¦π΄) + Ξ£π β (π...(ββπ))πΆ)) | ||
Theorem | dvfsumlem2 25974* | Lemma for dvfsumrlim 25979. (Contributed by Mario Carneiro, 17-May-2016.) Avoid ax-mulf 11213. (Revised by GG, 16-Mar-2025.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β π β€ ((ββπ) + 1)) β β’ (π β ((π»βπ) β€ (π»βπ) β§ ((π»βπ) β β¦π / π₯β¦π΅) β€ ((π»βπ) β β¦π / π₯β¦π΅))) | ||
Theorem | dvfsumlem2OLD 25975* | Obsolete version of dvfsumlem2 25974 as of 17-Apr-2025. (Contributed by Mario Carneiro, 17-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π β π β€ ((ββπ) + 1)) β β’ (π β ((π»βπ) β€ (π»βπ) β§ ((π»βπ) β β¦π / π₯β¦π΅) β€ ((π»βπ) β β¦π / π₯β¦π΅))) | ||
Theorem | dvfsumlem3 25976* | Lemma for dvfsumrlim 25979. (Contributed by Mario Carneiro, 17-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ π» = (π₯ β π β¦ (((π₯ β (ββπ₯)) Β· π΅) + (Ξ£π β (π...(ββπ₯))πΆ β π΄))) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) β β’ (π β ((π»βπ) β€ (π»βπ) β§ ((π»βπ) β β¦π / π₯β¦π΅) β€ ((π»βπ) β β¦π / π₯β¦π΅))) | ||
Theorem | dvfsumlem4 25977* | Lemma for dvfsumrlim 25979. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ (π β π β β*) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ ((π β§ (π₯ β π β§ π· β€ π₯ β§ π₯ β€ π)) β 0 β€ π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) β β’ (π β (absβ((πΊβπ) β (πΊβπ))) β€ β¦π / π₯β¦π΅) | ||
Theorem | dvfsumrlimge0 25978* | Lemma for dvfsumrlim 25979. Satisfy the assumption of dvfsumlem4 25977. (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) β β’ ((π β§ (π₯ β π β§ π· β€ π₯)) β 0 β€ π΅) | ||
Theorem | dvfsumrlim 25979* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if π₯ β π β¦ π΅ is a decreasing function with antiderivative π΄ converging to zero, then the difference between Ξ£π β (π...(ββπ₯))π΅(π) and π΄(π₯) = β«π’ β (π[,]π₯)π΅(π’) dπ’ converges to a constant limit value, with the remainder term bounded by π΅(π₯). (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) β β’ (π β πΊ β dom βπ ) | ||
Theorem | dvfsumrlim2 25980* | Compare a finite sum to an integral (the integral here is given as a function with a known derivative). The statement here says that if π₯ β π β¦ π΅ is a decreasing function with antiderivative π΄ converging to zero, then the difference between Ξ£π β (π...(ββπ₯))π΅(π) and β«π’ β (π[,]π₯)π΅(π’) dπ’ = π΄(π₯) converges to a constant limit value, with the remainder term bounded by π΅(π₯). (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) & β’ (π β π β π) & β’ (π β π· β€ π) β β’ ((π β§ πΊ βπ πΏ) β (absβ((πΊβπ) β πΏ)) β€ β¦π / π₯β¦π΅) | ||
Theorem | dvfsumrlim3 25981* | Conjoin the statements of dvfsumrlim 25979 and dvfsumrlim2 25980. (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π)) β πΆ β€ π΅) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ (π β (π₯ β π β¦ π΅) βπ 0) & β’ (π₯ = π β π΅ = πΈ) β β’ (π β (πΊ:πβΆβ β§ πΊ β dom βπ β§ ((πΊ βπ πΏ β§ π β π β§ π· β€ π) β (absβ((πΊβπ) β πΏ)) β€ πΈ))) | ||
Theorem | dvfsum2 25982* | The reverse of dvfsumrlim 25979, when comparing a finite sum of increasing terms to an integral. In this case there is no point in stating the limit properties, because the terms of the sum aren't approaching zero, but there is nevertheless still a natural asymptotic statement that can be made. (Contributed by Mario Carneiro, 20-May-2016.) |
β’ π = (π(,)+β) & β’ π = (β€β₯βπ) & β’ (π β π β β€) & β’ (π β π· β β) & β’ (π β π β β*) & β’ (π β π β€ (π· + 1)) & β’ (π β π β β) & β’ ((π β§ π₯ β π) β π΄ β β) & β’ ((π β§ π₯ β π) β π΅ β π) & β’ ((π β§ π₯ β π) β π΅ β β) & β’ (π β (β D (π₯ β π β¦ π΄)) = (π₯ β π β¦ π΅)) & β’ (π₯ = π β π΅ = πΆ) & β’ ((π β§ (π₯ β π β§ π β π) β§ (π· β€ π₯ β§ π₯ β€ π β§ π β€ π)) β π΅ β€ πΆ) & β’ πΊ = (π₯ β π β¦ (Ξ£π β (π...(ββπ₯))πΆ β π΄)) & β’ ((π β§ (π₯ β π β§ π· β€ π₯)) β 0 β€ π΅) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β π· β€ π) & β’ (π β π β€ π) & β’ (π β π β€ π) & β’ (π₯ = π β π΅ = πΈ) β β’ (π β (absβ((πΊβπ) β (πΊβπ))) β€ πΈ) | ||
Theorem | ftc1lem1 25983* | Lemma for ftc1a 25985 and ftc1 25990. (Contributed by Mario Carneiro, 31-Aug-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΉ:π·βΆβ) & β’ (π β π β (π΄[,]π΅)) & β’ (π β π β (π΄[,]π΅)) β β’ ((π β§ π β€ π) β ((πΊβπ) β (πΊβπ)) = β«(π(,)π)(πΉβπ‘) dπ‘) | ||
Theorem | ftc1lem2 25984* | Lemma for ftc1 25990. (Contributed by Mario Carneiro, 12-Aug-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΉ:π·βΆβ) β β’ (π β πΊ:(π΄[,]π΅)βΆβ) | ||
Theorem | ftc1a 25985* | The Fundamental Theorem of Calculus, part one. The function πΊ formed by varying the right endpoint of an integral of πΉ is continuous if πΉ is integrable. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΉ:π·βΆβ) β β’ (π β πΊ β ((π΄[,]π΅)βcnββ)) | ||
Theorem | ftc1lem3 25986* | Lemma for ftc1 25990. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 8-Sep-2015.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) β β’ (π β πΉ:π·βΆβ) | ||
Theorem | ftc1lem4 25987* | Lemma for ftc1 25990. (Contributed by Mario Carneiro, 31-Aug-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) & β’ π» = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) & β’ (π β πΈ β β+) & β’ (π β π β β+) & β’ ((π β§ π¦ β π·) β ((absβ(π¦ β πΆ)) < π β (absβ((πΉβπ¦) β (πΉβπΆ))) < πΈ)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (absβ(π β πΆ)) < π ) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (absβ(π β πΆ)) < π ) β β’ ((π β§ π < π) β (absβ((((πΊβπ) β (πΊβπ)) / (π β π)) β (πΉβπΆ))) < πΈ) | ||
Theorem | ftc1lem5 25988* | Lemma for ftc1 25990. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 28-Dec-2016.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) & β’ π» = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) & β’ (π β πΈ β β+) & β’ (π β π β β+) & β’ ((π β§ π¦ β π·) β ((absβ(π¦ β πΆ)) < π β (absβ((πΉβπ¦) β (πΉβπΆ))) < πΈ)) & β’ (π β π β (π΄[,]π΅)) & β’ (π β (absβ(π β πΆ)) < π ) β β’ ((π β§ π β πΆ) β (absβ((π»βπ) β (πΉβπΆ))) < πΈ) | ||
Theorem | ftc1lem6 25989* | Lemma for ftc1 25990. (Contributed by Mario Carneiro, 14-Aug-2014.) (Proof shortened by Mario Carneiro, 28-Dec-2016.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) & β’ π» = (π§ β ((π΄[,]π΅) β {πΆ}) β¦ (((πΊβπ§) β (πΊβπΆ)) / (π§ β πΆ))) β β’ (π β (πΉβπΆ) β (π» limβ πΆ)) | ||
Theorem | ftc1 25990* | The Fundamental Theorem of Calculus, part one. The function formed by varying the right endpoint of an integral is differentiable at πΆ with derivative πΉ(πΆ) if the original function is continuous at πΆ. This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (π΄(,)π΅) β π·) & β’ (π β π· β β) & β’ (π β πΉ β πΏ1) & β’ (π β πΆ β (π΄(,)π΅)) & β’ (π β πΉ β ((πΎ CnP πΏ)βπΆ)) & β’ π½ = (πΏ βΎt β) & β’ πΎ = (πΏ βΎt π·) & β’ πΏ = (TopOpenββfld) β β’ (π β πΆ(β D πΊ)(πΉβπΆ)) | ||
Theorem | ftc1cn 25991* | Strengthen the assumptions of ftc1 25990 to when the function πΉ is continuous on the entire interval (π΄, π΅); in this case we can calculate D πΊ exactly. (Contributed by Mario Carneiro, 1-Sep-2014.) |
β’ πΊ = (π₯ β (π΄[,]π΅) β¦ β«(π΄(,)π₯)(πΉβπ‘) dπ‘) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β πΉ β ((π΄(,)π΅)βcnββ)) & β’ (π β πΉ β πΏ1) β β’ (π β (β D πΊ) = πΉ) | ||
Theorem | ftc2 25992* | The Fundamental Theorem of Calculus, part two. If πΉ is a function continuous on [π΄, π΅] and continuously differentiable on (π΄, π΅), then the integral of the derivative of πΉ is equal to πΉ(π΅) β πΉ(π΄). This is part of Metamath 100 proof #15. (Contributed by Mario Carneiro, 2-Sep-2014.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β (β D πΉ) β ((π΄(,)π΅)βcnββ)) & β’ (π β (β D πΉ) β πΏ1) & β’ (π β πΉ β ((π΄[,]π΅)βcnββ)) β β’ (π β β«(π΄(,)π΅)((β D πΉ)βπ‘) dπ‘ = ((πΉβπ΅) β (πΉβπ΄))) | ||
Theorem | ftc2ditglem 25993* | Lemma for ftc2ditg 25994. (Contributed by Mario Carneiro, 3-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ (π β (β D πΉ) β ((π(,)π)βcnββ)) & β’ (π β (β D πΉ) β πΏ1) & β’ (π β πΉ β ((π[,]π)βcnββ)) β β’ ((π β§ π΄ β€ π΅) β β¨[π΄ β π΅]((β D πΉ)βπ‘) dπ‘ = ((πΉβπ΅) β (πΉβπ΄))) | ||
Theorem | ftc2ditg 25994* | Directed integral analogue of ftc2 25992. (Contributed by Mario Carneiro, 3-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π΄ β (π[,]π)) & β’ (π β π΅ β (π[,]π)) & β’ (π β (β D πΉ) β ((π(,)π)βcnββ)) & β’ (π β (β D πΉ) β πΏ1) & β’ (π β πΉ β ((π[,]π)βcnββ)) β β’ (π β β¨[π΄ β π΅]((β D πΉ)βπ‘) dπ‘ = ((πΉβπ΅) β (πΉβπ΄))) | ||
Theorem | itgparts 25995* | Integration by parts. If π΅(π₯) is the derivative of π΄(π₯) and π·(π₯) is the derivative of πΆ(π₯), and πΈ = (π΄ Β· π΅)(π) and πΉ = (π΄ Β· π΅)(π), then under suitable integrability and differentiability assumptions, the integral of π΄ Β· π· from π to π is equal to πΉ β πΈ minus the integral of π΅ Β· πΆ. (Contributed by Mario Carneiro, 3-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnββ)) & β’ (π β (π₯ β (π[,]π) β¦ πΆ) β ((π[,]π)βcnββ)) & β’ (π β (π₯ β (π(,)π) β¦ π΅) β ((π(,)π)βcnββ)) & β’ (π β (π₯ β (π(,)π) β¦ π·) β ((π(,)π)βcnββ)) & β’ (π β (π₯ β (π(,)π) β¦ (π΄ Β· π·)) β πΏ1) & β’ (π β (π₯ β (π(,)π) β¦ (π΅ Β· πΆ)) β πΏ1) & β’ (π β (β D (π₯ β (π[,]π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π β (β D (π₯ β (π[,]π) β¦ πΆ)) = (π₯ β (π(,)π) β¦ π·)) & β’ ((π β§ π₯ = π) β (π΄ Β· πΆ) = πΈ) & β’ ((π β§ π₯ = π) β (π΄ Β· πΆ) = πΉ) β β’ (π β β«(π(,)π)(π΄ Β· π·) dπ₯ = ((πΉ β πΈ) β β«(π(,)π)(π΅ Β· πΆ) dπ₯)) | ||
Theorem | itgsubstlem 25996* | Lemma for itgsubst 25997. (Contributed by Mario Carneiro, 12-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) & β’ (π β π β β*) & β’ (π β π β β*) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnβ(π(,)π))) & β’ (π β (π₯ β (π(,)π) β¦ π΅) β (((π(,)π)βcnββ) β© πΏ1)) & β’ (π β (π’ β (π(,)π) β¦ πΆ) β ((π(,)π)βcnββ)) & β’ (π β (β D (π₯ β (π[,]π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π’ = π΄ β πΆ = πΈ) & β’ (π₯ = π β π΄ = πΎ) & β’ (π₯ = π β π΄ = πΏ) & β’ (π β π β (π(,)π)) & β’ (π β π β (π(,)π)) & β’ ((π β§ π₯ β (π[,]π)) β π΄ β (π(,)π)) β β’ (π β β¨[πΎ β πΏ]πΆ dπ’ = β¨[π β π](πΈ Β· π΅) dπ₯) | ||
Theorem | itgsubst 25997* | Integration by π’-substitution. If π΄(π₯) is a continuous, differentiable function from [π, π] to (π, π), whose derivative is continuous and integrable, and πΆ(π’) is a continuous function on (π, π), then the integral of πΆ(π’) from πΎ = π΄(π) to πΏ = π΄(π) is equal to the integral of πΆ(π΄(π₯)) D π΄(π₯) from π to π. In this part of the proof we discharge the assumptions in itgsubstlem 25996, which use the fact that (π, π) is open to shrink the interval a little to (π, π) where π < π < π < π- this is possible because π΄(π₯) is a continuous function on a closed interval, so its range is in fact a closed interval, and we have some wiggle room on the edges. (Contributed by Mario Carneiro, 7-Sep-2014.) |
β’ (π β π β β) & β’ (π β π β β) & β’ (π β π β€ π) & β’ (π β π β β*) & β’ (π β π β β*) & β’ (π β (π₯ β (π[,]π) β¦ π΄) β ((π[,]π)βcnβ(π(,)π))) & β’ (π β (π₯ β (π(,)π) β¦ π΅) β (((π(,)π)βcnββ) β© πΏ1)) & β’ (π β (π’ β (π(,)π) β¦ πΆ) β ((π(,)π)βcnββ)) & β’ (π β (β D (π₯ β (π[,]π) β¦ π΄)) = (π₯ β (π(,)π) β¦ π΅)) & β’ (π’ = π΄ β πΆ = πΈ) & β’ (π₯ = π β π΄ = πΎ) & β’ (π₯ = π β π΄ = πΏ) β β’ (π β β¨[πΎ β πΏ]πΆ dπ’ = β¨[π β π](πΈ Β· π΅) dπ₯) | ||
Theorem | itgpowd 25998* | The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019.) (Revised by Thierry Arnoux, 14-Jun-2019.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ β€ π΅) & β’ (π β π β β0) β β’ (π β β«(π΄[,]π΅)(π₯βπ) dπ₯ = (((π΅β(π + 1)) β (π΄β(π + 1))) / (π + 1))) | ||
Syntax | cmdg 25999 | Multivariate polynomial degree. |
class mDeg | ||
Syntax | cdg1 26000 | Univariate polynomial degree. |
class deg1 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |