Detailed syntax breakdown of Definition df-dgr
Step | Hyp | Ref
| Expression |
1 | | cdgr 24888 |
. 2
class
deg |
2 | | vf |
. . 3
setvar 𝑓 |
3 | | cc 10578 |
. . . 4
class
ℂ |
4 | | cply 24885 |
. . . 4
class
Poly |
5 | 3, 4 | cfv 6339 |
. . 3
class
(Poly‘ℂ) |
6 | 2 | cv 1537 |
. . . . . . 7
class 𝑓 |
7 | | ccoe 24887 |
. . . . . . 7
class
coeff |
8 | 6, 7 | cfv 6339 |
. . . . . 6
class
(coeff‘𝑓) |
9 | 8 | ccnv 5526 |
. . . . 5
class ◡(coeff‘𝑓) |
10 | | cc0 10580 |
. . . . . . 7
class
0 |
11 | 10 | csn 4525 |
. . . . . 6
class
{0} |
12 | 3, 11 | cdif 3857 |
. . . . 5
class (ℂ
∖ {0}) |
13 | 9, 12 | cima 5530 |
. . . 4
class (◡(coeff‘𝑓) “ (ℂ ∖
{0})) |
14 | | cn0 11939 |
. . . 4
class
ℕ0 |
15 | | clt 10718 |
. . . 4
class
< |
16 | 13, 14, 15 | csup 8942 |
. . 3
class
sup((◡(coeff‘𝑓) “ (ℂ ∖
{0})), ℕ0, < ) |
17 | 2, 5, 16 | cmpt 5115 |
. 2
class (𝑓 ∈ (Poly‘ℂ)
↦ sup((◡(coeff‘𝑓) “ (ℂ ∖
{0})), ℕ0, < )) |
18 | 1, 17 | wceq 1538 |
1
wff deg =
(𝑓 ∈
(Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})),
ℕ0, < )) |