Detailed syntax breakdown of Definition df-dgr
| Step | Hyp | Ref
| Expression |
| 1 | | cdgr 26226 |
. 2
class
deg |
| 2 | | vf |
. . 3
setvar 𝑓 |
| 3 | | cc 11153 |
. . . 4
class
ℂ |
| 4 | | cply 26223 |
. . . 4
class
Poly |
| 5 | 3, 4 | cfv 6561 |
. . 3
class
(Poly‘ℂ) |
| 6 | 2 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 7 | | ccoe 26225 |
. . . . . . 7
class
coeff |
| 8 | 6, 7 | cfv 6561 |
. . . . . 6
class
(coeff‘𝑓) |
| 9 | 8 | ccnv 5684 |
. . . . 5
class ◡(coeff‘𝑓) |
| 10 | | cc0 11155 |
. . . . . . 7
class
0 |
| 11 | 10 | csn 4626 |
. . . . . 6
class
{0} |
| 12 | 3, 11 | cdif 3948 |
. . . . 5
class (ℂ
∖ {0}) |
| 13 | 9, 12 | cima 5688 |
. . . 4
class (◡(coeff‘𝑓) “ (ℂ ∖
{0})) |
| 14 | | cn0 12526 |
. . . 4
class
ℕ0 |
| 15 | | clt 11295 |
. . . 4
class
< |
| 16 | 13, 14, 15 | csup 9480 |
. . 3
class
sup((◡(coeff‘𝑓) “ (ℂ ∖
{0})), ℕ0, < ) |
| 17 | 2, 5, 16 | cmpt 5225 |
. 2
class (𝑓 ∈ (Poly‘ℂ)
↦ sup((◡(coeff‘𝑓) “ (ℂ ∖
{0})), ℕ0, < )) |
| 18 | 1, 17 | wceq 1540 |
1
wff deg =
(𝑓 ∈
(Poly‘ℂ) ↦ sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})),
ℕ0, < )) |