Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-idp | Structured version Visualization version GIF version |
Description: Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
df-idp | ⊢ Xp = ( I ↾ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cidp 25251 | . 2 class Xp | |
2 | cid 5479 | . . 3 class I | |
3 | cc 10800 | . . 3 class ℂ | |
4 | 2, 3 | cres 5582 | . 2 class ( I ↾ ℂ) |
5 | 1, 4 | wceq 1539 | 1 wff Xp = ( I ↾ ℂ) |
Colors of variables: wff setvar class |
This definition is referenced by: plyid 25275 coeidp 25329 dgrid 25330 plyremlem 25369 qaa 25388 taylply2 25432 ftalem7 26133 rngunsnply 40914 |
Copyright terms: Public domain | W3C validator |