| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-idp | Structured version Visualization version GIF version | ||
| Description: Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| df-idp | ⊢ Xp = ( I ↾ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidp 26090 | . 2 class Xp | |
| 2 | cid 5532 | . . 3 class I | |
| 3 | cc 11066 | . . 3 class ℂ | |
| 4 | 2, 3 | cres 5640 | . 2 class ( I ↾ ℂ) |
| 5 | 1, 4 | wceq 1540 | 1 wff Xp = ( I ↾ ℂ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: plyid 26114 coeidp 26169 dgrid 26170 plyremlem 26212 qaa 26231 taylply2 26275 taylply2OLD 26276 ftalem7 26989 rngunsnply 43158 cjnpoly 46890 |
| Copyright terms: Public domain | W3C validator |