Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-idp | Structured version Visualization version GIF version |
Description: Define the identity polynomial. (Contributed by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
df-idp | ⊢ Xp = ( I ↾ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cidp 25079 | . 2 class Xp | |
2 | cid 5454 | . . 3 class I | |
3 | cc 10727 | . . 3 class ℂ | |
4 | 2, 3 | cres 5553 | . 2 class ( I ↾ ℂ) |
5 | 1, 4 | wceq 1543 | 1 wff Xp = ( I ↾ ℂ) |
Colors of variables: wff setvar class |
This definition is referenced by: plyid 25103 coeidp 25157 dgrid 25158 plyremlem 25197 qaa 25216 taylply2 25260 ftalem7 25961 rngunsnply 40701 |
Copyright terms: Public domain | W3C validator |