|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-comembers | Structured version Visualization version GIF version | ||
| Description: Define the class of comember equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022.) (Revised by Peter Mazsa, 24-Jul-2023.) | 
| Ref | Expression | 
|---|---|
| df-comembers | ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ccomembers 38209 | . 2 class CoMembErs | |
| 2 | cep 5583 | . . . . . . 7 class E | |
| 3 | 2 | ccnv 5684 | . . . . . 6 class ◡ E | 
| 4 | va | . . . . . . 7 setvar 𝑎 | |
| 5 | 4 | cv 1539 | . . . . . 6 class 𝑎 | 
| 6 | 3, 5 | cres 5687 | . . . . 5 class (◡ E ↾ 𝑎) | 
| 7 | 6 | ccoss 38182 | . . . 4 class ≀ (◡ E ↾ 𝑎) | 
| 8 | cers 38207 | . . . 4 class Ers | |
| 9 | 7, 5, 8 | wbr 5143 | . . 3 wff ≀ (◡ E ↾ 𝑎) Ers 𝑎 | 
| 10 | 9, 4 | cab 2714 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | 
| 11 | 1, 10 | wceq 1540 | 1 wff CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: mpets 38843 | 
| Copyright terms: Public domain | W3C validator |