Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-comembers | Structured version Visualization version GIF version |
Description: Define the class of comember equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022.) (Revised by Peter Mazsa, 24-Jul-2023.) |
Ref | Expression |
---|---|
df-comembers | ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccomembers 36414 | . 2 class CoMembErs | |
2 | cep 5505 | . . . . . . 7 class E | |
3 | 2 | ccnv 5599 | . . . . . 6 class ◡ E |
4 | va | . . . . . . 7 setvar 𝑎 | |
5 | 4 | cv 1538 | . . . . . 6 class 𝑎 |
6 | 3, 5 | cres 5602 | . . . . 5 class (◡ E ↾ 𝑎) |
7 | 6 | ccoss 36387 | . . . 4 class ≀ (◡ E ↾ 𝑎) |
8 | cers 36412 | . . . 4 class Ers | |
9 | 7, 5, 8 | wbr 5081 | . . 3 wff ≀ (◡ E ↾ 𝑎) Ers 𝑎 |
10 | 9, 4 | cab 2713 | . 2 class {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
11 | 1, 10 | wceq 1539 | 1 wff CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
Colors of variables: wff setvar class |
This definition is referenced by: mpets 37062 |
Copyright terms: Public domain | W3C validator |