Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 38798
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38807, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 38797 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3493 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2812 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 38723 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 38621 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2778 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  {cab 2717  Vcvv 3488   class class class wbr 5166   E cep 5598  ccnv 5699  cres 5702  ccoss 38135   Ers cers 38160   CoMembErs ccomembers 38162   Parts cparts 38173   MembParts cmembparts 38175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765  df-qs 8769  df-coss 38367  df-coels 38368  df-rels 38441  df-ssr 38454  df-refs 38466  df-refrels 38467  df-refrel 38468  df-cnvrefs 38481  df-cnvrefrels 38482  df-cnvrefrel 38483  df-syms 38498  df-symrels 38499  df-symrel 38500  df-trs 38528  df-trrels 38529  df-trrel 38530  df-eqvrels 38540  df-eqvrel 38541  df-coeleqvrel 38543  df-dmqss 38594  df-dmqs 38595  df-ers 38619  df-erALTV 38620  df-comembers 38621  df-comember 38622  df-funALTV 38638  df-disjss 38659  df-disjs 38660  df-disjALTV 38661  df-eldisj 38663  df-parts 38721  df-part 38722  df-membparts 38723  df-membpart 38724
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator