| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38969, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| mpets | ⊢ MembParts = CoMembErs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpets2 38959 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
| 2 | 1 | elv 3442 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
| 3 | 2 | abbii 2800 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
| 4 | df-membparts 38885 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
| 5 | df-comembers 38783 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
| 6 | 3, 4, 5 | 3eqtr4i 2766 | 1 ⊢ MembParts = CoMembErs |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 {cab 2711 Vcvv 3437 class class class wbr 5093 E cep 5518 ◡ccnv 5618 ↾ cres 5621 ≀ ccoss 38242 Ers cers 38267 CoMembErs ccomembers 38269 Parts cparts 38280 MembParts cmembparts 38282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-id 5514 df-eprel 5519 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ec 8630 df-qs 8634 df-rels 38484 df-coss 38533 df-coels 38534 df-ssr 38610 df-refs 38622 df-refrels 38623 df-refrel 38624 df-cnvrefs 38637 df-cnvrefrels 38638 df-cnvrefrel 38639 df-syms 38654 df-symrels 38655 df-symrel 38656 df-trs 38688 df-trrels 38689 df-trrel 38690 df-eqvrels 38700 df-eqvrel 38701 df-coeleqvrel 38703 df-dmqss 38754 df-dmqs 38755 df-ers 38781 df-erALTV 38782 df-comembers 38783 df-comember 38784 df-funALTV 38800 df-disjss 38821 df-disjs 38822 df-disjALTV 38823 df-eldisj 38825 df-parts 38883 df-part 38884 df-membparts 38885 df-membpart 38886 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |