| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38828, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| mpets | ⊢ MembParts = CoMembErs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpets2 38818 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
| 2 | 1 | elv 3443 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
| 3 | 2 | abbii 2796 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
| 4 | df-membparts 38744 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
| 5 | df-comembers 38642 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
| 6 | 3, 4, 5 | 3eqtr4i 2762 | 1 ⊢ MembParts = CoMembErs |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {cab 2707 Vcvv 3438 class class class wbr 5095 E cep 5522 ◡ccnv 5622 ↾ cres 5625 ≀ ccoss 38154 Ers cers 38179 CoMembErs ccomembers 38181 Parts cparts 38192 MembParts cmembparts 38194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-id 5518 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-qs 8638 df-coss 38387 df-coels 38388 df-rels 38461 df-ssr 38474 df-refs 38486 df-refrels 38487 df-refrel 38488 df-cnvrefs 38501 df-cnvrefrels 38502 df-cnvrefrel 38503 df-syms 38518 df-symrels 38519 df-symrel 38520 df-trs 38548 df-trrels 38549 df-trrel 38550 df-eqvrels 38560 df-eqvrel 38561 df-coeleqvrel 38563 df-dmqss 38614 df-dmqs 38615 df-ers 38640 df-erALTV 38641 df-comembers 38642 df-comember 38643 df-funALTV 38659 df-disjss 38680 df-disjs 38681 df-disjALTV 38682 df-eldisj 38684 df-parts 38742 df-part 38743 df-membparts 38744 df-membpart 38745 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |