| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38874, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| mpets | ⊢ MembParts = CoMembErs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpets2 38864 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
| 2 | 1 | elv 3469 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
| 3 | 2 | abbii 2803 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
| 4 | df-membparts 38790 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
| 5 | df-comembers 38688 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
| 6 | 3, 4, 5 | 3eqtr4i 2769 | 1 ⊢ MembParts = CoMembErs |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 {cab 2714 Vcvv 3464 class class class wbr 5124 E cep 5557 ◡ccnv 5658 ↾ cres 5661 ≀ ccoss 38204 Ers cers 38229 CoMembErs ccomembers 38231 Parts cparts 38242 MembParts cmembparts 38244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-id 5553 df-eprel 5558 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ec 8726 df-qs 8730 df-coss 38434 df-coels 38435 df-rels 38508 df-ssr 38521 df-refs 38533 df-refrels 38534 df-refrel 38535 df-cnvrefs 38548 df-cnvrefrels 38549 df-cnvrefrel 38550 df-syms 38565 df-symrels 38566 df-symrel 38567 df-trs 38595 df-trrels 38596 df-trrel 38597 df-eqvrels 38607 df-eqvrel 38608 df-coeleqvrel 38610 df-dmqss 38661 df-dmqs 38662 df-ers 38686 df-erALTV 38687 df-comembers 38688 df-comember 38689 df-funALTV 38705 df-disjss 38726 df-disjs 38727 df-disjALTV 38728 df-eldisj 38730 df-parts 38788 df-part 38789 df-membparts 38790 df-membpart 38791 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |