Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 37081
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 37090, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 37080 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3446 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2806 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 37006 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 36904 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2774 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  {cab 2713  Vcvv 3440   class class class wbr 5086   E cep 5511  ccnv 5606  cres 5609  ccoss 36410   Ers cers 36435   CoMembErs ccomembers 36437   Parts cparts 36448   MembParts cmembparts 36450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-id 5506  df-eprel 5512  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ec 8549  df-qs 8553  df-coss 36650  df-coels 36651  df-rels 36724  df-ssr 36737  df-refs 36749  df-refrels 36750  df-refrel 36751  df-cnvrefs 36764  df-cnvrefrels 36765  df-cnvrefrel 36766  df-syms 36781  df-symrels 36782  df-symrel 36783  df-trs 36811  df-trrels 36812  df-trrel 36813  df-eqvrels 36823  df-eqvrel 36824  df-coeleqvrel 36826  df-dmqss 36877  df-dmqs 36878  df-ers 36902  df-erALTV 36903  df-comembers 36904  df-comember 36905  df-funALTV 36921  df-disjss 36942  df-disjs 36943  df-disjALTV 36944  df-eldisj 36946  df-parts 37004  df-part 37005  df-membparts 37006  df-membpart 37007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator