| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38888, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| mpets | ⊢ MembParts = CoMembErs |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpets2 38878 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
| 2 | 1 | elv 3441 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
| 3 | 2 | abbii 2798 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
| 4 | df-membparts 38804 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
| 5 | df-comembers 38702 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
| 6 | 3, 4, 5 | 3eqtr4i 2764 | 1 ⊢ MembParts = CoMembErs |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 {cab 2709 Vcvv 3436 class class class wbr 5091 E cep 5515 ◡ccnv 5615 ↾ cres 5618 ≀ ccoss 38214 Ers cers 38239 CoMembErs ccomembers 38241 Parts cparts 38252 MembParts cmembparts 38254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-qs 8628 df-coss 38447 df-coels 38448 df-rels 38521 df-ssr 38534 df-refs 38546 df-refrels 38547 df-refrel 38548 df-cnvrefs 38561 df-cnvrefrels 38562 df-cnvrefrel 38563 df-syms 38578 df-symrels 38579 df-symrel 38580 df-trs 38608 df-trrels 38609 df-trrel 38610 df-eqvrels 38620 df-eqvrel 38621 df-coeleqvrel 38623 df-dmqss 38674 df-dmqs 38675 df-ers 38700 df-erALTV 38701 df-comembers 38702 df-comember 38703 df-funALTV 38719 df-disjss 38740 df-disjs 38741 df-disjALTV 38742 df-eldisj 38744 df-parts 38802 df-part 38803 df-membparts 38804 df-membpart 38805 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |