Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 38819
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38828, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 38818 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3443 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2796 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 38744 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 38642 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2762 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  {cab 2707  Vcvv 3438   class class class wbr 5095   E cep 5522  ccnv 5622  cres 5625  ccoss 38154   Ers cers 38179   CoMembErs ccomembers 38181   Parts cparts 38192   MembParts cmembparts 38194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-id 5518  df-eprel 5523  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ec 8634  df-qs 8638  df-coss 38387  df-coels 38388  df-rels 38461  df-ssr 38474  df-refs 38486  df-refrels 38487  df-refrel 38488  df-cnvrefs 38501  df-cnvrefrels 38502  df-cnvrefrel 38503  df-syms 38518  df-symrels 38519  df-symrel 38520  df-trs 38548  df-trrels 38549  df-trrel 38550  df-eqvrels 38560  df-eqvrel 38561  df-coeleqvrel 38563  df-dmqss 38614  df-dmqs 38615  df-ers 38640  df-erALTV 38641  df-comembers 38642  df-comember 38643  df-funALTV 38659  df-disjss 38680  df-disjs 38681  df-disjALTV 38682  df-eldisj 38684  df-parts 38742  df-part 38743  df-membparts 38744  df-membpart 38745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator