Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 37090, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
mpets | ⊢ MembParts = CoMembErs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpets2 37080 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
2 | 1 | elv 3446 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
3 | 2 | abbii 2806 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
4 | df-membparts 37006 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
5 | df-comembers 36904 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
6 | 3, 4, 5 | 3eqtr4i 2774 | 1 ⊢ MembParts = CoMembErs |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 {cab 2713 Vcvv 3440 class class class wbr 5086 E cep 5511 ◡ccnv 5606 ↾ cres 5609 ≀ ccoss 36410 Ers cers 36435 CoMembErs ccomembers 36437 Parts cparts 36448 MembParts cmembparts 36450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-id 5506 df-eprel 5512 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ec 8549 df-qs 8553 df-coss 36650 df-coels 36651 df-rels 36724 df-ssr 36737 df-refs 36749 df-refrels 36750 df-refrel 36751 df-cnvrefs 36764 df-cnvrefrels 36765 df-cnvrefrel 36766 df-syms 36781 df-symrels 36782 df-symrel 36783 df-trs 36811 df-trrels 36812 df-trrel 36813 df-eqvrels 36823 df-eqvrel 36824 df-coeleqvrel 36826 df-dmqss 36877 df-dmqs 36878 df-ers 36902 df-erALTV 36903 df-comembers 36904 df-comember 36905 df-funALTV 36921 df-disjss 36942 df-disjs 36943 df-disjALTV 36944 df-eldisj 36946 df-parts 37004 df-part 37005 df-membparts 37006 df-membpart 37007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |