Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 38834
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38843, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 38833 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3452 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2796 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 38759 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 38657 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2762 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  {cab 2707  Vcvv 3447   class class class wbr 5107   E cep 5537  ccnv 5637  cres 5640  ccoss 38169   Ers cers 38194   CoMembErs ccomembers 38196   Parts cparts 38207   MembParts cmembparts 38209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677  df-coss 38402  df-coels 38403  df-rels 38476  df-ssr 38489  df-refs 38501  df-refrels 38502  df-refrel 38503  df-cnvrefs 38516  df-cnvrefrels 38517  df-cnvrefrel 38518  df-syms 38533  df-symrels 38534  df-symrel 38535  df-trs 38563  df-trrels 38564  df-trrel 38565  df-eqvrels 38575  df-eqvrel 38576  df-coeleqvrel 38578  df-dmqss 38629  df-dmqs 38630  df-ers 38655  df-erALTV 38656  df-comembers 38657  df-comember 38658  df-funALTV 38674  df-disjss 38695  df-disjs 38696  df-disjALTV 38697  df-eldisj 38699  df-parts 38757  df-part 38758  df-membparts 38759  df-membpart 38760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator