Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 37062
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 37071, the general Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 37061 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3443 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2806 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 36987 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 36885 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2774 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  {cab 2713  Vcvv 3437   class class class wbr 5081   E cep 5505  ccnv 5599  cres 5602  ccoss 36387   Ers cers 36412   CoMembErs ccomembers 36414   Parts cparts 36425   MembParts cmembparts 36427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3339  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-qs 8535  df-coss 36631  df-coels 36632  df-rels 36705  df-ssr 36718  df-refs 36730  df-refrels 36731  df-refrel 36732  df-cnvrefs 36745  df-cnvrefrels 36746  df-cnvrefrel 36747  df-syms 36762  df-symrels 36763  df-symrel 36764  df-trs 36792  df-trrels 36793  df-trrel 36794  df-eqvrels 36804  df-eqvrel 36805  df-coeleqvrel 36807  df-dmqss 36858  df-dmqs 36859  df-ers 36883  df-erALTV 36884  df-comembers 36885  df-comember 36886  df-funALTV 36902  df-disjss 36923  df-disjs 36924  df-disjALTV 36925  df-eldisj 36927  df-parts 36985  df-part 36986  df-membparts 36987  df-membpart 36988
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator