![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38807, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
mpets | ⊢ MembParts = CoMembErs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpets2 38797 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
2 | 1 | elv 3493 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
3 | 2 | abbii 2812 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
4 | df-membparts 38723 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
5 | df-comembers 38621 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
6 | 3, 4, 5 | 3eqtr4i 2778 | 1 ⊢ MembParts = CoMembErs |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 {cab 2717 Vcvv 3488 class class class wbr 5166 E cep 5598 ◡ccnv 5699 ↾ cres 5702 ≀ ccoss 38135 Ers cers 38160 CoMembErs ccomembers 38162 Parts cparts 38173 MembParts cmembparts 38175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-id 5593 df-eprel 5599 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 df-qs 8769 df-coss 38367 df-coels 38368 df-rels 38441 df-ssr 38454 df-refs 38466 df-refrels 38467 df-refrel 38468 df-cnvrefs 38481 df-cnvrefrels 38482 df-cnvrefrel 38483 df-syms 38498 df-symrels 38499 df-symrel 38500 df-trs 38528 df-trrels 38529 df-trrel 38530 df-eqvrels 38540 df-eqvrel 38541 df-coeleqvrel 38543 df-dmqss 38594 df-dmqs 38595 df-ers 38619 df-erALTV 38620 df-comembers 38621 df-comember 38622 df-funALTV 38638 df-disjss 38659 df-disjs 38660 df-disjALTV 38661 df-eldisj 38663 df-parts 38721 df-part 38722 df-membparts 38723 df-membpart 38724 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |