Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 38865
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38874, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 38864 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3469 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2803 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 38790 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 38688 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2769 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  {cab 2714  Vcvv 3464   class class class wbr 5124   E cep 5557  ccnv 5658  cres 5661  ccoss 38204   Ers cers 38229   CoMembErs ccomembers 38231   Parts cparts 38242   MembParts cmembparts 38244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ec 8726  df-qs 8730  df-coss 38434  df-coels 38435  df-rels 38508  df-ssr 38521  df-refs 38533  df-refrels 38534  df-refrel 38535  df-cnvrefs 38548  df-cnvrefrels 38549  df-cnvrefrel 38550  df-syms 38565  df-symrels 38566  df-symrel 38567  df-trs 38595  df-trrels 38596  df-trrel 38597  df-eqvrels 38607  df-eqvrel 38608  df-coeleqvrel 38610  df-dmqss 38661  df-dmqs 38662  df-ers 38686  df-erALTV 38687  df-comembers 38688  df-comember 38689  df-funALTV 38705  df-disjss 38726  df-disjs 38727  df-disjALTV 38728  df-eldisj 38730  df-parts 38788  df-part 38789  df-membparts 38790  df-membpart 38791
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator