![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 37716, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
mpets | ⊢ MembParts = CoMembErs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpets2 37706 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
2 | 1 | elv 3480 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
3 | 2 | abbii 2802 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
4 | df-membparts 37632 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
5 | df-comembers 37530 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
6 | 3, 4, 5 | 3eqtr4i 2770 | 1 ⊢ MembParts = CoMembErs |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 {cab 2709 Vcvv 3474 class class class wbr 5148 E cep 5579 ◡ccnv 5675 ↾ cres 5678 ≀ ccoss 37038 Ers cers 37063 CoMembErs ccomembers 37065 Parts cparts 37076 MembParts cmembparts 37078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8704 df-qs 8708 df-coss 37276 df-coels 37277 df-rels 37350 df-ssr 37363 df-refs 37375 df-refrels 37376 df-refrel 37377 df-cnvrefs 37390 df-cnvrefrels 37391 df-cnvrefrel 37392 df-syms 37407 df-symrels 37408 df-symrel 37409 df-trs 37437 df-trrels 37438 df-trrel 37439 df-eqvrels 37449 df-eqvrel 37450 df-coeleqvrel 37452 df-dmqss 37503 df-dmqs 37504 df-ers 37528 df-erALTV 37529 df-comembers 37530 df-comember 37531 df-funALTV 37547 df-disjss 37568 df-disjs 37569 df-disjALTV 37570 df-eldisj 37572 df-parts 37630 df-part 37631 df-membparts 37632 df-membpart 37633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |