Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpets Structured version   Visualization version   GIF version

Theorem mpets 38960
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38969, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
mpets MembParts = CoMembErs

Proof of Theorem mpets
StepHypRef Expression
1 mpets2 38959 . . . 4 (𝑎 ∈ V → (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎))
21elv 3442 . . 3 (( E ↾ 𝑎) Parts 𝑎 ↔ ≀ ( E ↾ 𝑎) Ers 𝑎)
32abbii 2800 . 2 {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
4 df-membparts 38885 . 2 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
5 df-comembers 38783 . 2 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
63, 4, 53eqtr4i 2766 1 MembParts = CoMembErs
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  {cab 2711  Vcvv 3437   class class class wbr 5093   E cep 5518  ccnv 5618  cres 5621  ccoss 38242   Ers cers 38267   CoMembErs ccomembers 38269   Parts cparts 38280   MembParts cmembparts 38282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-qs 8634  df-rels 38484  df-coss 38533  df-coels 38534  df-ssr 38610  df-refs 38622  df-refrels 38623  df-refrel 38624  df-cnvrefs 38637  df-cnvrefrels 38638  df-cnvrefrel 38639  df-syms 38654  df-symrels 38655  df-symrel 38656  df-trs 38688  df-trrels 38689  df-trrel 38690  df-eqvrels 38700  df-eqvrel 38701  df-coeleqvrel 38703  df-dmqss 38754  df-dmqs 38755  df-ers 38781  df-erALTV 38782  df-comembers 38783  df-comember 38784  df-funALTV 38800  df-disjss 38821  df-disjs 38822  df-disjALTV 38823  df-eldisj 38825  df-parts 38883  df-part 38884  df-membparts 38885  df-membpart 38886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator