![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version |
Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38833, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
mpets | ⊢ MembParts = CoMembErs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpets2 38823 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
2 | 1 | elv 3483 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) |
3 | 2 | abbii 2807 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
4 | df-membparts 38749 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
5 | df-comembers 38647 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
6 | 3, 4, 5 | 3eqtr4i 2773 | 1 ⊢ MembParts = CoMembErs |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 {cab 2712 Vcvv 3478 class class class wbr 5148 E cep 5588 ◡ccnv 5688 ↾ cres 5691 ≀ ccoss 38162 Ers cers 38187 CoMembErs ccomembers 38189 Parts cparts 38200 MembParts cmembparts 38202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-id 5583 df-eprel 5589 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-qs 8750 df-coss 38393 df-coels 38394 df-rels 38467 df-ssr 38480 df-refs 38492 df-refrels 38493 df-refrel 38494 df-cnvrefs 38507 df-cnvrefrels 38508 df-cnvrefrel 38509 df-syms 38524 df-symrels 38525 df-symrel 38526 df-trs 38554 df-trrels 38555 df-trrel 38556 df-eqvrels 38566 df-eqvrel 38567 df-coeleqvrel 38569 df-dmqss 38620 df-dmqs 38621 df-ers 38645 df-erALTV 38646 df-comembers 38647 df-comember 38648 df-funALTV 38664 df-disjss 38685 df-disjs 38686 df-disjALTV 38687 df-eldisj 38689 df-parts 38747 df-part 38748 df-membparts 38749 df-membpart 38750 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |