|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mpets | Structured version Visualization version GIF version | ||
| Description: Member Partition-Equivalence Theorem in its shortest possible form: it shows that member partitions and comember equivalence relations are literally the same. Cf. pet 38853, the Partition-Equivalence Theorem, with general 𝑅. (Contributed by Peter Mazsa, 31-Dec-2024.) | 
| Ref | Expression | 
|---|---|
| mpets | ⊢ MembParts = CoMembErs | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpets2 38843 | . . . 4 ⊢ (𝑎 ∈ V → ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎)) | |
| 2 | 1 | elv 3484 | . . 3 ⊢ ((◡ E ↾ 𝑎) Parts 𝑎 ↔ ≀ (◡ E ↾ 𝑎) Ers 𝑎) | 
| 3 | 2 | abbii 2808 | . 2 ⊢ {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | 
| 4 | df-membparts 38769 | . 2 ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} | |
| 5 | df-comembers 38667 | . 2 ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} | |
| 6 | 3, 4, 5 | 3eqtr4i 2774 | 1 ⊢ MembParts = CoMembErs | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 {cab 2713 Vcvv 3479 class class class wbr 5142 E cep 5582 ◡ccnv 5683 ↾ cres 5686 ≀ ccoss 38183 Ers cers 38208 CoMembErs ccomembers 38210 Parts cparts 38221 MembParts cmembparts 38223 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-id 5577 df-eprel 5583 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-ec 8748 df-qs 8752 df-coss 38413 df-coels 38414 df-rels 38487 df-ssr 38500 df-refs 38512 df-refrels 38513 df-refrel 38514 df-cnvrefs 38527 df-cnvrefrels 38528 df-cnvrefrel 38529 df-syms 38544 df-symrels 38545 df-symrel 38546 df-trs 38574 df-trrels 38575 df-trrel 38576 df-eqvrels 38586 df-eqvrel 38587 df-coeleqvrel 38589 df-dmqss 38640 df-dmqs 38641 df-ers 38665 df-erALTV 38666 df-comembers 38667 df-comember 38668 df-funALTV 38684 df-disjss 38705 df-disjs 38706 df-disjALTV 38707 df-eldisj 38709 df-parts 38767 df-part 38768 df-membparts 38769 df-membpart 38770 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |