Home | Metamath
Proof Explorer Theorem List (p. 379 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | llnmod1i2 37801 | Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) | ||
Theorem | atmod2i1 37802 | Version of modular law pmod2iN 37790 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑋 ∧ (𝑌 ∨ 𝑃))) | ||
Theorem | atmod2i2 37803 | Version of modular law pmod2iN 37790 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
Theorem | llnmod2i2 37804 | Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌))) | ||
Theorem | atmod3i1 37805 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
Theorem | atmod3i2 37806 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑌 ∧ 𝑃)) = (𝑌 ∧ (𝑋 ∨ 𝑃))) | ||
Theorem | atmod4i1 37807 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
Theorem | atmod4i2 37808 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑃 ∧ 𝑌) ∨ 𝑋) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
Theorem | llnexchb2lem 37809 | Lemma for llnexchb2 37810. (Contributed by NM, 17-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) | ||
Theorem | llnexchb2 37810 | Line exchange property (compare cvlatexchb2 37276 for atoms). (Contributed by NM, 17-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍))) | ||
Theorem | llnexch2N 37811 | Line exchange property (compare cvlatexch2 37278 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) | ||
Theorem | dalawlem1 37812 | Lemma for dalaw 37827. Special case of dath2 37678, where 𝐶 is replaced by ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 37678. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈))) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem2 37813 | Lemma for dalaw 37827. Utility lemma that breaks ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) | ||
Theorem | dalawlem3 37814 | Lemma for dalaw 37827. First piece of dalawlem5 37816. (Contributed by NM, 4-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem4 37815 | Lemma for dalaw 37827. Second piece of dalawlem5 37816. (Contributed by NM, 4-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem5 37816 | Lemma for dalaw 37827. Special case to eliminate the requirement ¬ (𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) in dalawlem1 37812. (Contributed by NM, 4-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem6 37817 | Lemma for dalaw 37827. First piece of dalawlem8 37819. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem7 37818 | Lemma for dalaw 37827. Second piece of dalawlem8 37819. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem8 37819 | Lemma for dalaw 37827. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem9 37820 | Lemma for dalaw 37827. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem10 37821 | Lemma for dalaw 37827. Combine dalawlem5 37816, dalawlem8 37819, and dalawlem9 . (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem11 37822 | Lemma for dalaw 37827. First part of dalawlem13 37824. (Contributed by NM, 17-Sep-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem12 37823 | Lemma for dalaw 37827. Second part of dalawlem13 37824. (Contributed by NM, 17-Sep-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem13 37824 | Lemma for dalaw 37827. Special case to eliminate the requirement ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem14 37825 | Lemma for dalaw 37827. Combine dalawlem10 37821 and dalawlem13 37824. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem15 37826 | Lemma for dalaw 37827. Swap variable triples 𝑃𝑄𝑅 and 𝑆𝑇𝑈 in dalawlem14 37825, to obtain the elimination of the remaining conditions in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalaw 37827 | Desargues's law, derived from Desargues's theorem dath 37677 and with no conditions on the atoms. If triples 〈𝑃, 𝑄, 𝑅〉 and 〈𝑆, 𝑇, 𝑈〉 are centrally perspective, i.e., ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) | ||
Syntax | cpclN 37828 | Extend class notation with projective subspace closure. |
class PCl | ||
Definition | df-pclN 37829* | Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces PSubCl of df-psubclN 37876.) (Contributed by NM, 7-Sep-2013.) |
⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | pclfvalN 37830* | The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | pclvalN 37831* | Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) | ||
Theorem | pclclN 37832 | Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ∈ 𝑆) | ||
Theorem | elpclN 37833* | Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑄 ∈ V ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦))) | ||
Theorem | elpcliN 37834 | Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) | ||
Theorem | pclssN 37835 | Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) | ||
Theorem | pclssidN 37836 | A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ (𝑈‘𝑋)) | ||
Theorem | pclidN 37837 | The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) | ||
Theorem | pclbtwnN 37838 | A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) | ||
Theorem | pclunN 37839 | The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) | ||
Theorem | pclun2N 37840 | The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) | ||
Theorem | pclfinN 37841* | The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 37891. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) | ||
Theorem | pclcmpatN 37842* | The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) | ||
Syntax | cpolN 37843 | Extend class notation with polarity of projective subspace $m$. |
class ⊥𝑃 | ||
Definition | df-polarityN 37844* | Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in [Holland95] p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atoms‘𝑙 ensures it is defined when 𝑚 = ∅. (Contributed by NM, 23-Oct-2011.) |
⊢ ⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) | ||
Theorem | polfvalN 37845* | The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) | ||
Theorem | polvalN 37846* | Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) | ||
Theorem | polval2N 37847 | Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝑀‘( ⊥ ‘(𝑈‘𝑋)))) | ||
Theorem | polsubN 37848 | The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) | ||
Theorem | polssatN 37849 | The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) | ||
Theorem | pol0N 37850 | The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) | ||
Theorem | pol1N 37851 | The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) | ||
Theorem | 2pol0N 37852 | The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ∅) | ||
Theorem | polpmapN 37853 | The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) | ||
Theorem | 2polpmapN 37854 | Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = (𝑀‘𝑋)) | ||
Theorem | 2polvalN 37855 | Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) | ||
Theorem | 2polssN 37856 | A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
Theorem | 3polN 37857 | Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) | ||
Theorem | polcon3N 37858 | Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
Theorem | 2polcon4bN 37859 | Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) ⊆ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) | ||
Theorem | polcon2N 37860 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) | ||
Theorem | polcon2bN 37861 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ⊆ ( ⊥ ‘𝑌) ↔ 𝑌 ⊆ ( ⊥ ‘𝑋))) | ||
Theorem | pclss2polN 37862 | The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
Theorem | pcl0N 37863 | The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) | ||
Theorem | pcl0bN 37864 | The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) | ||
Theorem | pmaplubN 37865 | The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) | ||
Theorem | sspmaplubN 37866 | A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ (𝑀‘(𝑈‘𝑆))) | ||
Theorem | 2pmaplubN 37867 | Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) | ||
Theorem | paddunN 37868 | The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6760.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = ( ⊥ ‘(𝑆 ∪ 𝑇))) | ||
Theorem | poldmj1N 37869 | De Morgan's law for polarity of projective sum. (oldmj1 37162 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇))) | ||
Theorem | pmapj2N 37870 | The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(𝑋 ∨ 𝑌)) = ( ⊥ ‘( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌))))) | ||
Theorem | pmapocjN 37871 | The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑁 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) | ||
Theorem | polatN 37872 | The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) | ||
Theorem | 2polatN 37873 | Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) | ||
Theorem | pnonsingN 37874 | The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) = ∅) | ||
Syntax | cpscN 37875 | Extend class notation with set of all closed projective subspaces for a Hilbert lattice. |
class PSubCl | ||
Definition | df-psubclN 37876* | Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.) |
⊢ PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) | ||
Theorem | psubclsetN 37877* | The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝐶 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑠)) = 𝑠)}) | ||
Theorem | ispsubclN 37878 | The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) | ||
Theorem | psubcliN 37879 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋)) | ||
Theorem | psubcli2N 37880 | Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) | ||
Theorem | psubclsubN 37881 | A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → 𝑋 ∈ 𝑆) | ||
Theorem | psubclssatN 37882 | A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐷 ∧ 𝑋 ∈ 𝐶) → 𝑋 ⊆ 𝐴) | ||
Theorem | pmapidclN 37883 | Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶) → (𝑀‘(𝑈‘𝑋)) = 𝑋) | ||
Theorem | 0psubclN 37884 | The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ∅ ∈ 𝐶) | ||
Theorem | 1psubclN 37885 | The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → 𝐴 ∈ 𝐶) | ||
Theorem | atpsubclN 37886 | A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → {𝑄} ∈ 𝐶) | ||
Theorem | pmapsubclN 37887 | A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ∈ 𝐶) | ||
Theorem | ispsubcl2N 37888* | Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑋 = (𝑀‘𝑦))) | ||
Theorem | psubclinN 37889 | The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) → (𝑋 ∩ 𝑌) ∈ 𝐶) | ||
Theorem | paddatclN 37890 | The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑄 ∈ 𝐴) → (𝑋 + {𝑄}) ∈ 𝐶) | ||
Theorem | pclfinclN 37891 | The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 37841 and also pclcmpatN 37842. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑆 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin) → (𝑈‘𝑋) ∈ 𝑆) | ||
Theorem | linepsubclN 37892 | A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑁 = (Lines‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) | ||
Theorem | polsubclN 37893 | A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝐶) | ||
Theorem | poml4N 37894 | Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝑋 ⊆ 𝑌 ∧ ( ⊥ ‘( ⊥ ‘𝑌)) = 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ⊥ ‘( ⊥ ‘𝑋)))) | ||
Theorem | poml5N 37895 | Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ ( ⊥ ‘𝑌))) ∩ ( ⊥ ‘𝑌)) = ( ⊥ ‘( ⊥ ‘𝑋))) | ||
Theorem | poml6N 37896 | Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝑋 ⊆ 𝑌) → (( ⊥ ‘(( ⊥ ‘𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋) | ||
Theorem | osumcllem1N 37897 | Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → (𝑈 ∩ 𝑀) = 𝑀) | ||
Theorem | osumcllem2N 37898 | Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝑈) → 𝑋 ⊆ (𝑈 ∩ 𝑀)) | ||
Theorem | osumcllem3N 37899 | Lemma for osumclN 37908. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝐶 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → (( ⊥ ‘𝑋) ∩ 𝑈) = 𝑌) | ||
Theorem | osumcllem4N 37900 | Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) & ⊢ 𝑀 = (𝑋 + {𝑝}) & ⊢ 𝑈 = ( ⊥ ‘( ⊥ ‘(𝑋 + 𝑌))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |