HomeHome Metamath Proof Explorer
Theorem List (p. 379 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 37801-37900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremllnmod1i2 37801 Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑋 𝑌) → (𝑋 ((𝑃 𝑄) 𝑌)) = ((𝑋 (𝑃 𝑄)) 𝑌))
 
Theorematmod2i1 37802 Version of modular law pmod2iN 37790 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → ((𝑋 𝑌) 𝑃) = (𝑋 (𝑌 𝑃)))
 
Theorematmod2i2 37803 Version of modular law pmod2iN 37790 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑌 𝑋) → ((𝑋 𝑃) 𝑌) = (𝑋 (𝑃 𝑌)))
 
Theoremllnmod2i2 37804 Version of modular law pmod1i 37789 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ (𝑃𝐴𝑄𝐴) ∧ 𝑌 𝑋) → ((𝑋 (𝑃 𝑄)) 𝑌) = (𝑋 ((𝑃 𝑄) 𝑌)))
 
Theorematmod3i1 37805 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑃 (𝑋 𝑌)) = (𝑋 (𝑃 𝑌)))
 
Theorematmod3i2 37806 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑌 𝑃)) = (𝑌 (𝑋 𝑃)))
 
Theorematmod4i1 37807 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → ((𝑋 𝑌) 𝑃) = ((𝑋 𝑃) 𝑌))
 
Theorematmod4i2 37808 Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.)
𝐵 = (Base‘𝐾)    &    = (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → ((𝑃 𝑌) 𝑋) = ((𝑃 𝑋) 𝑌))
 
Theoremllnexchb2lem 37809 Lemma for llnexchb2 37810. (Contributed by NM, 17-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝑁𝑌𝑁) ∧ (𝑃𝐴𝑄𝐴 ∧ ¬ 𝑃 𝑋) ∧ (𝑋 𝑌) ∈ 𝐴) → ((𝑋 𝑌) (𝑃 𝑄) ↔ (𝑋 𝑌) = (𝑋 (𝑃 𝑄))))
 
Theoremllnexchb2 37810 Line exchange property (compare cvlatexchb2 37276 for atoms). (Contributed by NM, 17-Nov-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 ↔ (𝑋 𝑌) = (𝑋 𝑍)))
 
Theoremllnexch2N 37811 Line exchange property (compare cvlatexch2 37278 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑁 = (LLines‘𝐾)       ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑍𝑁) ∧ ((𝑋 𝑌) ∈ 𝐴𝑋𝑍)) → ((𝑋 𝑌) 𝑍 → (𝑋 𝑍) 𝑌))
 
Theoremdalawlem1 37812 Lemma for dalaw 37827. Special case of dath2 37678, where 𝐶 is replaced by ((𝑃 𝑆) (𝑄 𝑇)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 37678. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑂 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑆 𝑇) 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem2 37813 Lemma for dalaw 37827. Utility lemma that breaks ((𝑃 𝑄) (𝑆 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑇𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) ((((𝑃 𝑄) 𝑇) 𝑆) (((𝑃 𝑄) 𝑆) 𝑇)))
 
Theoremdalawlem3 37814 Lemma for dalaw 37827. First piece of dalawlem5 37816. (Contributed by NM, 4-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑇) 𝑃) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem4 37815 Lemma for dalaw 37827. Second piece of dalawlem5 37816. (Contributed by NM, 4-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) 𝑇) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem5 37816 Lemma for dalaw 37827. Special case to eliminate the requirement ¬ (𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) in dalawlem1 37812. (Contributed by NM, 4-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem6 37817 Lemma for dalaw 37827. First piece of dalawlem8 37819. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑇) 𝑆) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem7 37818 Lemma for dalaw 37827. Second piece of dalawlem8 37819. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem8 37819 Lemma for dalaw 37827. Special case to eliminate the requirement ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem9 37820 Lemma for dalaw 37827. Special case to eliminate the requirement ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃) in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem10 37821 Lemma for dalaw 37827. Combine dalawlem5 37816, dalawlem8 37819, and dalawlem9 . (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ ¬ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem11 37822 Lemma for dalaw 37827. First part of dalawlem13 37824. (Contributed by NM, 17-Sep-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem12 37823 Lemma for dalaw 37827. Second part of dalawlem13 37824. (Contributed by NM, 17-Sep-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem13 37824 Lemma for dalaw 37827. Special case to eliminate the requirement ((𝑃 𝑄) 𝑅) ∈ 𝑂 in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑂 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem14 37825 Lemma for dalaw 37827. Combine dalawlem10 37821 and dalawlem13 37824. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑂 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ ¬ (((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑃 𝑄) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑃))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalawlem15 37826 Lemma for dalaw 37827. Swap variable triples 𝑃𝑄𝑅 and 𝑆𝑇𝑈 in dalawlem14 37825, to obtain the elimination of the remaining conditions in dalawlem1 37812. (Contributed by NM, 6-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑂 = (LPlanes‘𝐾)       (((𝐾 ∈ HL ∧ ¬ (((𝑆 𝑇) 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑆 𝑇) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑇 𝑈) ∧ ¬ ((𝑃 𝑆) (𝑄 𝑇)) (𝑈 𝑆))) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
 
Theoremdalaw 37827 Desargues's law, derived from Desargues's theorem dath 37677 and with no conditions on the atoms. If triples 𝑃, 𝑄, 𝑅 and 𝑆, 𝑇, 𝑈 are centrally perspective, i.e., ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.)
= (le‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &   𝐴 = (Atoms‘𝐾)       ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
 
SyntaxcpclN 37828 Extend class notation with projective subspace closure.
class PCl
 
Definitiondf-pclN 37829* Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces PSubCl of df-psubclN 37876.) (Contributed by NM, 7-Sep-2013.)
PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}))
 
TheorempclfvalN 37830* The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)       (𝐾𝑉𝑈 = (𝑥 ∈ 𝒫 𝐴 {𝑦𝑆𝑥𝑦}))
 
TheorempclvalN 37831* Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) = {𝑦𝑆𝑋𝑦})
 
TheorempclclN 37832 Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾𝑉𝑋𝐴) → (𝑈𝑋) ∈ 𝑆)
 
TheoremelpclN 37833* Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)    &   𝑄 ∈ V       ((𝐾𝑉𝑋𝐴) → (𝑄 ∈ (𝑈𝑋) ↔ ∀𝑦𝑆 (𝑋𝑦𝑄𝑦)))
 
TheoremelpcliN 37834 Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)       (((𝐾𝑉𝑋𝑌𝑌𝑆) ∧ 𝑄 ∈ (𝑈𝑋)) → 𝑄𝑌)
 
TheorempclssN 37835 Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾𝑉𝑋𝑌𝑌𝐴) → (𝑈𝑋) ⊆ (𝑈𝑌))
 
TheorempclssidN 37836 A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾𝑉𝑋𝐴) → 𝑋 ⊆ (𝑈𝑋))
 
TheorempclidN 37837 The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾𝑉𝑋𝑆) → (𝑈𝑋) = 𝑋)
 
TheorempclbtwnN 37838 A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
𝑆 = (PSubSp‘𝐾)    &   𝑈 = (PCl‘𝐾)       (((𝐾𝑉𝑋𝑆) ∧ (𝑌𝑋𝑋 ⊆ (𝑈𝑌))) → 𝑋 = (𝑈𝑌))
 
TheorempclunN 37839 The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾𝑉𝑋𝐴𝑌𝐴) → (𝑈‘(𝑋𝑌)) = (𝑈‘(𝑋 + 𝑌)))
 
Theorempclun2N 37840 The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
𝑆 = (PSubSp‘𝐾)    &    + = (+𝑃𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑆𝑌𝑆) → (𝑈‘(𝑋𝑌)) = (𝑋 + 𝑌))
 
TheorempclfinN 37841* The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 37891. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾 ∈ AtLat ∧ 𝑋𝐴) → (𝑈𝑋) = 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈𝑦))
 
TheorempclcmpatN 37842* The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ (𝑈𝑋)) → ∃𝑦 ∈ Fin (𝑦𝑋𝑃 ∈ (𝑈𝑦)))
 
SyntaxcpolN 37843 Extend class notation with polarity of projective subspace $m$.
class 𝑃
 
Definitiondf-polarityN 37844* Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in [Holland95] p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atoms‘𝑙 ensures it is defined when 𝑚 = ∅. (Contributed by NM, 23-Oct-2011.)
𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ 𝑝𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝)))))
 
TheorempolfvalN 37845* The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
= (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       (𝐾𝐵𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 𝑝𝑚 (𝑀‘( 𝑝)))))
 
TheorempolvalN 37846* Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.)
= (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       ((𝐾𝐵𝑋𝐴) → (𝑃𝑋) = (𝐴 𝑝𝑋 (𝑀‘( 𝑝))))
 
Theorempolval2N 37847 Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.)
𝑈 = (lub‘𝐾)    &    = (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑃𝑋) = (𝑀‘( ‘(𝑈𝑋))))
 
TheorempolsubN 37848 The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑆 = (PSubSp‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝑆)
 
TheorempolssatN 37849 The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ⊆ 𝐴)
 
Theorempol0N 37850 The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       (𝐾𝐵 → ( ‘∅) = 𝐴)
 
Theorempol1N 37851 The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       (𝐾 ∈ HL → ( 𝐴) = ∅)
 
Theorem2pol0N 37852 The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
= (⊥𝑃𝐾)       (𝐾 ∈ HL → ( ‘( ‘∅)) = ∅)
 
TheorempolpmapN 37853 The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (oc‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑃‘(𝑀𝑋)) = (𝑀‘( 𝑋)))
 
Theorem2polpmapN 37854 Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝑀 = (pmap‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → ( ‘( ‘(𝑀𝑋))) = (𝑀𝑋))
 
Theorem2polvalN 37855 Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝑈 = (lub‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))
 
Theorem2polssN 37856 A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝑋 ⊆ ( ‘( 𝑋)))
 
Theorem3polN 37857 Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( ‘( 𝑆))) = ( 𝑆))
 
Theorempolcon3N 37858 Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋𝑌) → ( 𝑌) ⊆ ( 𝑋))
 
Theorem2polcon4bN 37859 Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑋)) ⊆ ( ‘( 𝑌)) ↔ ( 𝑌) ⊆ ( 𝑋)))
 
Theorempolcon2N 37860 Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → 𝑌 ⊆ ( 𝑋))
 
Theorempolcon2bN 37861 Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 ⊆ ( 𝑌) ↔ 𝑌 ⊆ ( 𝑋)))
 
Theorempclss2polN 37862 The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ⊆ ( ‘( 𝑋)))
 
Theorempcl0N 37863 The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.)
𝑈 = (PCl‘𝐾)       (𝐾 ∈ HL → (𝑈‘∅) = ∅)
 
Theorempcl0bN 37864 The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑈 = (PCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑃𝐴) → ((𝑈𝑃) = ∅ ↔ 𝑃 = ∅))
 
TheorempmaplubN 37865 The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝑈 = (lub‘𝐾)    &   𝑀 = (pmap‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑈‘(𝑀𝑋)) = 𝑋)
 
TheoremsspmaplubN 37866 A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
𝑈 = (lub‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)       ((𝐾 ∈ HL ∧ 𝑆𝐴) → 𝑆 ⊆ (𝑀‘(𝑈𝑆)))
 
Theorem2pmaplubN 37867 Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
𝑈 = (lub‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)       ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈𝑆)))) = (𝑀‘(𝑈𝑆)))
 
TheorempaddunN 37868 The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6760.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
 
Theorempoldmj1N 37869 De Morgan's law for polarity of projective sum. (oldmj1 37162 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = (( 𝑆) ∩ ( 𝑇)))
 
Theorempmapj2N 37870 The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &   𝑀 = (pmap‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑀‘(𝑋 𝑌)) = ( ‘( ‘((𝑀𝑋) + (𝑀𝑌)))))
 
TheorempmapocjN 37871 The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &    = (join‘𝐾)    &    = (meet‘𝐾)    &    = (oc‘𝐾)    &   𝐹 = (pmap‘𝐾)    &    + = (+𝑃𝐾)    &   𝑁 = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘( ‘(𝑋 𝑌))) = (𝑁‘((𝐹𝑋) + (𝐹𝑌))))
 
TheorempolatN 37872 The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
= (oc‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))
 
Theorem2polatN 37873 Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})
 
TheorempnonsingN 37874 The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑃 = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑋 ∩ (𝑃𝑋)) = ∅)
 
SyntaxcpscN 37875 Extend class notation with set of all closed projective subspaces for a Hilbert lattice.
class PSubCl
 
Definitiondf-psubclN 37876* Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.)
PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
 
TheorempsubclsetN 37877* The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       (𝐾𝐵𝐶 = {𝑠 ∣ (𝑠𝐴 ∧ ( ‘( 𝑠)) = 𝑠)})
 
TheoremispsubclN 37878 The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       (𝐾𝐷 → (𝑋𝐶 ↔ (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋)))
 
TheorempsubcliN 37879 Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾𝐷𝑋𝐶) → (𝑋𝐴 ∧ ( ‘( 𝑋)) = 𝑋))
 
Theorempsubcli2N 37880 Property of a closed projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
= (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾𝐷𝑋𝐶) → ( ‘( 𝑋)) = 𝑋)
 
TheorempsubclsubN 37881 A closed projective subspace is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.)
𝑆 = (PSubSp‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐶) → 𝑋𝑆)
 
TheorempsubclssatN 37882 A closed projective subspace is a set of atoms. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾𝐷𝑋𝐶) → 𝑋𝐴)
 
TheorempmapidclN 37883 Projective map of the LUB of a closed subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝑈 = (lub‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐶) → (𝑀‘(𝑈𝑋)) = 𝑋)
 
Theorem0psubclN 37884 The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐶 = (PSubCl‘𝐾)       (𝐾 ∈ HL → ∅ ∈ 𝐶)
 
Theorem1psubclN 37885 The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       (𝐾 ∈ HL → 𝐴𝐶)
 
TheorematpsubclN 37886 A point (singleton of an atom) is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑄𝐴) → {𝑄} ∈ 𝐶)
 
TheorempmapsubclN 37887 A projective map value is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ∈ 𝐶)
 
Theoremispsubcl2N 37888* Alternate predicate for "is a closed projective subspace". Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐵 = (Base‘𝐾)    &   𝑀 = (pmap‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       (𝐾 ∈ HL → (𝑋𝐶 ↔ ∃𝑦𝐵 𝑋 = (𝑀𝑦)))
 
TheorempsubclinN 37889 The intersection of two closed subspaces is closed. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) → (𝑋𝑌) ∈ 𝐶)
 
TheorempaddatclN 37890 The projective sum of a closed subspace and an atom is a closed projective subspace. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐶𝑄𝐴) → (𝑋 + {𝑄}) ∈ 𝐶)
 
TheorempclfinclN 37891 The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 37841 and also pclcmpatN 37842. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &   𝑈 = (PCl‘𝐾)    &   𝑆 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴𝑋 ∈ Fin) → (𝑈𝑋) ∈ 𝑆)
 
TheoremlinepsubclN 37892 A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝑁 = (Lines‘𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋𝐶)
 
TheorempolsubclN 37893 A polarity is a closed projective subspace. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) ∈ 𝐶)
 
Theorempoml4N 37894 Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
 
Theorempoml5N 37895 Orthomodular law for projective lattices. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
𝐴 = (Atoms‘𝐾)    &    = (⊥𝑃𝐾)       ((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) → (( ‘(( 𝑋) ∩ ( 𝑌))) ∩ ( 𝑌)) = ( ‘( 𝑋)))
 
Theorempoml6N 37896 Orthomodular law for projective lattices. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
𝐶 = (PSubCl‘𝐾)    &    = (⊥𝑃𝐾)       (((𝐾 ∈ HL ∧ 𝑋𝐶𝑌𝐶) ∧ 𝑋𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = 𝑋)
 
Theoremosumcllem1N 37897 Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → (𝑈𝑀) = 𝑀)
 
Theoremosumcllem2N 37898 Lemma for osumclN 37908. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ 𝑝𝑈) → 𝑋 ⊆ (𝑈𝑀))
 
Theoremosumcllem3N 37899 Lemma for osumclN 37908. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       ((𝐾 ∈ HL ∧ 𝑌𝐶𝑋 ⊆ ( 𝑌)) → (( 𝑋) ∩ 𝑈) = 𝑌)
 
Theoremosumcllem4N 37900 Lemma for osumclN 37908. (Contributed by NM, 24-Mar-2012.) (New usage is discouraged.)
= (le‘𝐾)    &    = (join‘𝐾)    &   𝐴 = (Atoms‘𝐾)    &    + = (+𝑃𝐾)    &    = (⊥𝑃𝐾)    &   𝐶 = (PSubCl‘𝐾)    &   𝑀 = (𝑋 + {𝑝})    &   𝑈 = ( ‘( ‘(𝑋 + 𝑌)))       (((𝐾 ∈ HL ∧ 𝑌𝐴𝑋 ⊆ ( 𝑌)) ∧ (𝑟𝑋𝑞𝑌)) → 𝑞𝑟)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >