| Metamath
Proof Explorer Theorem List (p. 379 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | constcncf 37801* | A constant function is a continuous function on ℂ. (Contributed by Jeff Madsen, 2-Sep-2009.) (Moved into main set.mm as cncfmptc 24830 and may be deleted by mathbox owner, JM. --MC 12-Sep-2015.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐴) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) | ||
| Theorem | cnres2 37802* | The restriction of a continuous function to a subset is continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝐵 ⊆ 𝑌) ∧ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t 𝐵))) | ||
| Theorem | cnresima 37803 | A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) | ||
| Theorem | cncfres 37804* | A continuous function on complex numbers restricted to a subset. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐴 ⊆ ℂ & ⊢ 𝐵 ⊆ ℂ & ⊢ 𝐹 = (𝑥 ∈ ℂ ↦ 𝐶) & ⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ 𝐶) & ⊢ (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵) & ⊢ 𝐹 ∈ (ℂ–cn→ℂ) & ⊢ 𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴))) & ⊢ 𝐾 = (MetOpen‘((abs ∘ − ) ↾ (𝐵 × 𝐵))) ⇒ ⊢ 𝐺 ∈ (𝐽 Cn 𝐾) | ||
| Syntax | ctotbnd 37805 | Extend class notation with the class of totally bounded metric spaces. |
| class TotBnd | ||
| Syntax | cbnd 37806 | Extend class notation with the class of bounded metric spaces. |
| class Bnd | ||
| Definition | df-totbnd 37807* | Define the class of totally bounded metrics. A metric space is totally bounded iff it can be covered by a finite number of balls of any given radius. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) | ||
| Theorem | istotbnd 37808* | The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | istotbnd2 37809* | The predicate "is a totally bounded metric space." (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (Met‘𝑋) → (𝑀 ∈ (TotBnd‘𝑋) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 = 𝑋 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | istotbnd3 37810* | A metric space is totally bounded iff there is a finite ε-net for every positive ε. This differs from the definition in providing a finite set of ball centers rather than a finite set of balls. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) | ||
| Theorem | totbndmet 37811 | The predicate "totally bounded" implies 𝑀 is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | ||
| Theorem | 0totbnd 37812 | The metric (there is only one) on the empty set is totally bounded. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝑋 = ∅ → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ (Met‘𝑋))) | ||
| Theorem | sstotbnd2 37813* | Condition for a subset of a metric space to be totally bounded. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑))) | ||
| Theorem | sstotbnd 37814* | Condition for a subset of a metric space to be totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (𝑌 ⊆ ∪ 𝑣 ∧ ∀𝑏 ∈ 𝑣 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) | ||
| Theorem | sstotbnd3 37815* | Use a net that is not necessarily finite, but for which only finitely many balls meet the subset. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑁 ∈ (TotBnd‘𝑌) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ 𝒫 𝑋(𝑌 ⊆ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) ∧ {𝑥 ∈ 𝑣 ∣ ((𝑥(ball‘𝑀)𝑑) ∩ 𝑌) ≠ ∅} ∈ Fin))) | ||
| Theorem | totbndss 37816 | A subset of a totally bounded metric space is totally bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ ((𝑀 ∈ (TotBnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (TotBnd‘𝑆)) | ||
| Theorem | equivtotbnd 37817* | If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then total boundedness of 𝑀 implies total boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (TotBnd‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) ⇒ ⊢ (𝜑 → 𝑁 ∈ (TotBnd‘𝑋)) | ||
| Definition | df-bnd 37818* | Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) | ||
| Theorem | isbnd 37819* | The predicate "is a bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | bndmet 37820 | A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋)) | ||
| Theorem | isbndx 37821* | A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∀𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | isbnd2 37822* | The predicate "is a bounded metric space". Uses a single point instead of an arbitrary point in the space. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑋 ≠ ∅) ↔ (𝑀 ∈ (∞Met‘𝑋) ∧ ∃𝑥 ∈ 𝑋 ∃𝑟 ∈ ℝ+ 𝑋 = (𝑥(ball‘𝑀)𝑟))) | ||
| Theorem | isbnd3 37823* | A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) | ||
| Theorem | isbnd3b 37824* | A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) | ||
| Theorem | bndss 37825 | A subset of a bounded metric space is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (Bnd‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑀 ↾ (𝑆 × 𝑆)) ∈ (Bnd‘𝑆)) | ||
| Theorem | blbnd 37826 | A ball is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 15-Jan-2014.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋 ∧ 𝑅 ∈ ℝ) → (𝑀 ↾ ((𝑌(ball‘𝑀)𝑅) × (𝑌(ball‘𝑀)𝑅))) ∈ (Bnd‘(𝑌(ball‘𝑀)𝑅))) | ||
| Theorem | ssbnd 37827* | A subset of a metric space is bounded iff it is contained in a ball around 𝑃, for any 𝑃 in the larger space. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑁 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ (Bnd‘𝑌) ↔ ∃𝑑 ∈ ℝ 𝑌 ⊆ (𝑃(ball‘𝑀)𝑑))) | ||
| Theorem | totbndbnd 37828 | A totally bounded metric space is bounded. This theorem fails for extended metrics - a bounded extended metric is a metric, but there are totally bounded extended metrics that are not metrics (if we were to weaken istotbnd 37808 to only require that 𝑀 be an extended metric). A counterexample is the discrete extended metric (assigning distinct points distance +∞) on a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| ⊢ (𝑀 ∈ (TotBnd‘𝑋) → 𝑀 ∈ (Bnd‘𝑋)) | ||
| Theorem | equivbnd 37829* | If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (Bnd‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) ⇒ ⊢ (𝜑 → 𝑁 ∈ (Bnd‘𝑋)) | ||
| Theorem | bnd2lem 37830 | Lemma for equivbnd2 37831 and similar theorems. (Contributed by Jeff Madsen, 16-Sep-2015.) |
| ⊢ 𝐷 = (𝑀 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) | ||
| Theorem | equivbnd2 37831* | If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.) |
| ⊢ (𝜑 → 𝑀 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦))) & ⊢ 𝐶 = (𝑀 ↾ (𝑌 × 𝑌)) & ⊢ 𝐷 = (𝑁 ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌))) ⇒ ⊢ (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌))) | ||
| Theorem | prdsbnd 37832* | The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Bnd‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Bnd‘𝐵)) | ||
| Theorem | prdstotbnd 37833* | The product metric over finite index set is totally bounded if all the factors are totally bounded. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (TotBnd‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (TotBnd‘𝐵)) | ||
| Theorem | prdsbnd2 37834* | If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘(𝑅‘𝑥)) & ⊢ 𝐸 = ((dist‘(𝑅‘𝑥)) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ 𝐶 = (𝐷 ↾ (𝐴 × 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐸 ↾ (𝑦 × 𝑦)) ∈ (TotBnd‘𝑦) ↔ (𝐸 ↾ (𝑦 × 𝑦)) ∈ (Bnd‘𝑦))) ⇒ ⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝐴) ↔ 𝐶 ∈ (Bnd‘𝐴))) | ||
| Theorem | cntotbnd 37835 | A subset of the complex numbers is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋)) | ||
| Theorem | cnpwstotbnd 37836 | A subset of 𝐴↑𝐼, where 𝐴 ⊆ ℂ, is totally bounded iff it is bounded. (Contributed by Mario Carneiro, 14-Sep-2015.) |
| ⊢ 𝑌 = ((ℂfld ↾s 𝐴) ↑s 𝐼) & ⊢ 𝐷 = ((dist‘𝑌) ↾ (𝑋 × 𝑋)) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐼 ∈ Fin) → (𝐷 ∈ (TotBnd‘𝑋) ↔ 𝐷 ∈ (Bnd‘𝑋))) | ||
| Syntax | cismty 37837 | Extend class notation with the class of metric space isometries. |
| class Ismty | ||
| Definition | df-ismty 37838* | Define a function which takes two metric spaces and returns the set of isometries between the spaces. An isometry is a bijection which preserves distance. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ Ismty = (𝑚 ∈ ∪ ran ∞Met, 𝑛 ∈ ∪ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚–1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚∀𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓‘𝑥)𝑛(𝑓‘𝑦)))}) | ||
| Theorem | ismtyval 37839* | The set of isometries between two metric spaces. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) = {𝑓 ∣ (𝑓:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝑓‘𝑥)𝑁(𝑓‘𝑦)))}) | ||
| Theorem | isismty 37840* | The condition "is an isometry". (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑀𝑦) = ((𝐹‘𝑥)𝑁(𝐹‘𝑦))))) | ||
| Theorem | ismtycnv 37841 | The inverse of an isometry is an isometry. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → ◡𝐹 ∈ (𝑁 Ismty 𝑀))) | ||
| Theorem | ismtyima 37842 | The image of a ball under an isometry is another ball. (Contributed by Jeff Madsen, 31-Jan-2014.) |
| ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) ∧ (𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*)) → (𝐹 “ (𝑃(ball‘𝑀)𝑅)) = ((𝐹‘𝑃)(ball‘𝑁)𝑅)) | ||
| Theorem | ismtyhmeolem 37843 | Lemma for ismtyhmeo 37844. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑀 Ismty 𝑁)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ismtyhmeo 37844 | An isometry is a homeomorphism on the induced topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) ⇒ ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝑀 Ismty 𝑁) ⊆ (𝐽Homeo𝐾)) | ||
| Theorem | ismtybndlem 37845 | Lemma for ismtybnd 37846. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 19-Jan-2014.) |
| ⊢ ((𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) → 𝑁 ∈ (Bnd‘𝑌))) | ||
| Theorem | ismtybnd 37846 | Isometries preserve boundedness. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 19-Jan-2014.) |
| ⊢ ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝑀 Ismty 𝑁)) → (𝑀 ∈ (Bnd‘𝑋) ↔ 𝑁 ∈ (Bnd‘𝑌))) | ||
| Theorem | ismtyres 37847 | A restriction of an isometry is an isometry. The condition 𝐴 ⊆ 𝑋 is not necessary but makes the proof easier. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.) |
| ⊢ 𝐵 = (𝐹 “ 𝐴) & ⊢ 𝑆 = (𝑀 ↾ (𝐴 × 𝐴)) & ⊢ 𝑇 = (𝑁 ↾ (𝐵 × 𝐵)) ⇒ ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ (𝑀 Ismty 𝑁) ∧ 𝐴 ⊆ 𝑋)) → (𝐹 ↾ 𝐴) ∈ (𝑆 Ismty 𝑇)) | ||
| Theorem | heibor1lem 37848 | Lemma for heibor1 37849. A compact metric space is complete. This proof works by considering the collection cls(𝐹 “ (ℤ≥‘𝑛)) for each 𝑛 ∈ ℕ, which has the finite intersection property because any finite intersection of upper integer sets is another upper integer set, so any finite intersection of the image closures will contain (𝐹 “ (ℤ≥‘𝑚)) for some 𝑚. Thus, by compactness, the intersection contains a point 𝑦, which must then be the convergent point of 𝐹. (Contributed by Jeff Madsen, 17-Jan-2014.) (Revised by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐽 ∈ Comp) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘𝐷)) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
| Theorem | heibor1 37849 | One half of heibor 37860, that does not require any Choice. A compact metric space is complete and totally bounded. We prove completeness in cmpcmet 25244 and total boundedness here, which follows trivially from the fact that the set of all 𝑟-balls is an open cover of 𝑋, so finitely many cover 𝑋. (Contributed by Jeff Madsen, 16-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) → (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) | ||
| Theorem | heiborlem1 37850* | Lemma for heibor 37860. We work with a fixed open cover 𝑈 throughout. The set 𝐾 is the set of all subsets of 𝑋 that admit no finite subcover of 𝑈. (We wish to prove that 𝐾 is empty.) If a set 𝐶 has no finite subcover, then any finite cover of 𝐶 must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐾) → ∃𝑥 ∈ 𝐴 𝐵 ∈ 𝐾) | ||
| Theorem | heiborlem2 37851* | Lemma for heibor 37860. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐴 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0 ∧ 𝐴 ∈ (𝐹‘𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)) | ||
| Theorem | heiborlem3 37852* | Lemma for heibor 37860. Using countable choice ax-cc 10323, we have fixed in advance a collection of finite 2↑-𝑛 nets (𝐹‘𝑛) for 𝑋 (note that an 𝑟-net is a set of points in 𝑋 whose 𝑟 -balls cover 𝑋). The set 𝐺 is the subset of these points whose corresponding balls have no finite subcover (i.e. in the set 𝐾). If the theorem was false, then 𝑋 would be in 𝐾, and so some ball at each level would also be in 𝐾. But we can say more than this; given a ball (𝑦𝐵𝑛) on level 𝑛, since level 𝑛 + 1 covers the space and thus also (𝑦𝐵𝑛), using heiborlem1 37850 there is a ball on the next level whose intersection with (𝑦𝐵𝑛) also has no finite subcover. Now since the set 𝐺 is a countable union of finite sets, it is countable (which needs ax-cc 10323 via iunctb 10462), and so we can apply ax-cc 10323 to 𝐺 directly to get a function from 𝐺 to itself, which points from each ball in 𝐾 to a ball on the next level in 𝐾, and such that the intersection between these balls is also in 𝐾. (Contributed by Jeff Madsen, 18-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) ⇒ ⊢ (𝜑 → ∃𝑔∀𝑥 ∈ 𝐺 ((𝑔‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑔‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) | ||
| Theorem | heiborlem4 37853* | Lemma for heibor 37860. Using the function 𝑇 constructed in heiborlem3 37852, construct an infinite path in 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → (𝑆‘𝐴)𝐺𝐴) | ||
| Theorem | heiborlem5 37854* | Lemma for heibor 37860. The function 𝑀 is a set of point-and-radius pairs suitable for application to caubl 25233. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ (𝜑 → 𝑀:ℕ⟶(𝑋 × ℝ+)) | ||
| Theorem | heiborlem6 37855* | Lemma for heibor 37860. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀‘𝑘))) | ||
| Theorem | heiborlem7 37856* | Lemma for heibor 37860. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) ⇒ ⊢ ∀𝑟 ∈ ℝ+ ∃𝑘 ∈ ℕ (2nd ‘(𝑀‘𝑘)) < 𝑟 | ||
| Theorem | heiborlem8 37857* | Lemma for heibor 37860. The previous lemmas establish that the sequence 𝑀 is Cauchy, so using completeness we now consider the convergent point 𝑌. By assumption, 𝑈 is an open cover, so 𝑌 is an element of some 𝑍 ∈ 𝑈, and some ball centered at 𝑌 is contained in 𝑍. But the sequence contains arbitrarily small balls close to 𝑌, so some element ball(𝑀‘𝑛) of the sequence is contained in 𝑍. And finally we arrive at a contradiction, because {𝑍} is a finite subcover of 𝑈 that covers ball(𝑀‘𝑛), yet ball(𝑀‘𝑛) ∈ 𝐾. For convenience, we write this contradiction as 𝜑 → 𝜓 where 𝜑 is all the accumulated hypotheses and 𝜓 is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ 𝑌 ∈ V & ⊢ (𝜑 → 𝑌 ∈ 𝑍) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → (1st ∘ 𝑀)(⇝𝑡‘𝐽)𝑌) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | heiborlem9 37858* | Lemma for heibor 37860. Discharge the hypotheses of heiborlem8 37857 by applying caubl 25233 to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐺 ((𝑇‘𝑥)𝐺((2nd ‘𝑥) + 1) ∧ ((𝐵‘𝑥) ∩ ((𝑇‘𝑥)𝐵((2nd ‘𝑥) + 1))) ∈ 𝐾)) & ⊢ (𝜑 → 𝐶𝐺0) & ⊢ 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))) & ⊢ 𝑀 = (𝑛 ∈ ℕ ↦ 〈(𝑆‘𝑛), (3 / (2↑𝑛))〉) & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → ∪ 𝑈 = 𝑋) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | heiborlem10 37859* | Lemma for heibor 37860. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 37850, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 ⊆ ∪ 𝑣} & ⊢ 𝐺 = {〈𝑦, 𝑛〉 ∣ (𝑛 ∈ ℕ0 ∧ 𝑦 ∈ (𝐹‘𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)} & ⊢ 𝐵 = (𝑧 ∈ 𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚)))) & ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin)) & ⊢ (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ (𝐹‘𝑛)(𝑦𝐵𝑛)) ⇒ ⊢ ((𝜑 ∧ (𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∪ 𝐽 = ∪ 𝑣) | ||
| Theorem | heibor 37860 | Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 37849 and heiborlem1 37850 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jan-2014.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 ∈ Comp) ↔ (𝐷 ∈ (CMet‘𝑋) ∧ 𝐷 ∈ (TotBnd‘𝑋))) | ||
| Theorem | bfplem1 37861* | Lemma for bfp 37863. The sequence 𝐺, which simply starts from any point in the space and iterates 𝐹, satisfies the property that the distance from 𝐺(𝑛) to 𝐺(𝑛 + 1) decreases by at least 𝐾 after each step. Thus, the total distance from any 𝐺(𝑖) to 𝐺(𝑗) is bounded by a geometric series, and the sequence is Cauchy. Therefore, it converges to a point ((⇝𝑡‘𝐽)‘𝐺) since the space is complete. (Contributed by Jeff Madsen, 17-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 < 1) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴})) ⇒ ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐽)((⇝𝑡‘𝐽)‘𝐺)) | ||
| Theorem | bfplem2 37862* | Lemma for bfp 37863. Using the point found in bfplem1 37861, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ≥‘𝑗) (where 𝑃 = ((⇝𝑡‘𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 < 1) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) | ||
| Theorem | bfp 37863* | Banach fixed point theorem, also known as contraction mapping theorem. A contraction on a complete metric space has a unique fixed point. We show existence in the lemmas, and uniqueness here - if 𝐹 has two fixed points, then the distance between them is less than 𝐾 times itself, a contradiction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| ⊢ (𝜑 → 𝐷 ∈ (CMet‘𝑋)) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → 𝐾 ∈ ℝ+) & ⊢ (𝜑 → 𝐾 < 1) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝐹‘𝑥)𝐷(𝐹‘𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ 𝑋 (𝐹‘𝑧) = 𝑧) | ||
| Syntax | crrn 37864 | Extend class notation with the n-dimensional Euclidean space. |
| class ℝn | ||
| Definition | df-rrn 37865* | Define n-dimensional Euclidean space as a metric space with the standard Euclidean norm given by the quadratic mean. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | ||
| Theorem | rrnval 37866* | The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | ||
| Theorem | rrnmval 37867* | The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | ||
| Theorem | rrnmet 37868 | Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (Met‘𝑋)) | ||
| Theorem | rrndstprj1 37869 | The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹(ℝn‘𝐼)𝐺)) | ||
| Theorem | rrndstprj2 37870* | Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 37869 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) ⇒ ⊢ (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝐹(ℝn‘𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼)))) | ||
| Theorem | rrncmslem 37871* | Lemma for rrncms 37872. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐽 = (MetOpen‘(ℝn‘𝐼)) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ (𝜑 → 𝐹 ∈ (Cau‘(ℝn‘𝐼))) & ⊢ (𝜑 → 𝐹:ℕ⟶𝑋) & ⊢ 𝑃 = (𝑚 ∈ 𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚)))) ⇒ ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | ||
| Theorem | rrncms 37872 | Euclidean space is complete. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) ∈ (CMet‘𝑋)) | ||
| Theorem | repwsmet 37873 | The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
| ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) | ||
| Theorem | rrnequiv 37874 | The supremum metric on ℝ↑𝐼 is equivalent to the ℝn metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
| ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn‘𝐼)𝐺) ∧ (𝐹(ℝn‘𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))) | ||
| Theorem | rrntotbnd 37875 | A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ⇒ ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) | ||
| Theorem | rrnheibor 37876 | Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) & ⊢ 𝑇 = (MetOpen‘𝑀) & ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) | ||
| Theorem | ismrer1 37877* | An isometry between ℝ and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴}))) | ||
| Theorem | reheibor 37878 | Heine-Borel theorem for real numbers. A subset of ℝ is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌)) & ⊢ 𝑇 = (MetOpen‘𝑀) & ⊢ 𝑈 = (topGen‘ran (,)) ⇒ ⊢ (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) | ||
| Theorem | iccbnd 37879 | A closed interval in ℝ is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐽 = (𝐴[,]𝐵) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽)) | ||
| Theorem | icccmpALT 37880 | A closed interval in ℝ is compact. Alternate proof of icccmp 24739 using the Heine-Borel theorem heibor 37860. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Aug-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝐽 = (𝐴[,]𝐵) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) & ⊢ 𝑇 = (MetOpen‘𝑀) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
| Syntax | cass 37881 | Extend class notation with a device to add associativity to internal operations. |
| class Ass | ||
| Definition | df-ass 37882* | A device to add associativity to various sorts of internal operations. The definition is meaningful when 𝑔 is a magma at least. (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
| ⊢ Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} | ||
| Syntax | cexid 37883 | Extend class notation with the class of all the internal operations with an identity element. |
| class ExId | ||
| Definition | df-exid 37884* | A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
| ⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | ||
| Theorem | isass 37885* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
| ⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) | ||
| Theorem | isexid 37886* | The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) | ||
| Syntax | cmagm 37887 | Extend class notation with the class of all magmas. |
| class Magma | ||
| Definition | df-mgmOLD 37888* | Obsolete version of df-mgm 18545 as of 3-Feb-2020. A magma is a binary internal operation. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
| ⊢ Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡} | ||
| Theorem | ismgmOLD 37889 | Obsolete version of ismgm 18546 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) | ||
| Theorem | clmgmOLD 37890 | Obsolete version of mgmcl 18548 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
| Theorem | opidonOLD 37891 | Obsolete version of mndpfo 18662 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
| Theorem | rngopidOLD 37892 | Obsolete version of mndpfo 18662 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | ||
| Theorem | opidon2OLD 37893 | Obsolete version of mndpfo 18662 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
| Theorem | isexid2 37894* | If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
| Theorem | exidu1 37895* | Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
| Theorem | idrval 37896* | The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝐴 → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
| Theorem | iorlid 37897 | A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) | ||
| Theorem | cmpidelt 37898 | A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) | ||
| Syntax | csem 37899 | Extend class notation with the class of all semigroups. |
| class SemiGrp | ||
| Definition | df-sgrOLD 37900 | Obsolete version of df-sgrp 18624 as of 3-Feb-2020. A semigroup is an associative magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
| ⊢ SemiGrp = (Magma ∩ Ass) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |