Home | Metamath
Proof Explorer Theorem List (p. 379 of 470) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29658) |
Hilbert Space Explorer
(29659-31181) |
Users' Mathboxes
(31182-46997) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cvrat4 37801* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 in [PtakPulmannova] p. 68. Also Lemma 9.2(delta) in [MaedaMaeda] p. 41. (atcvat4i 31137 analog.) (Contributed by NM, 30-Nov-2011.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΄ β§ π β π΄)) β ((π β 0 β§ π β€ (π β¨ π)) β βπ β π΄ (π β€ π β§ π β€ (π β¨ π)))) | ||
Theorem | cvrat42 37802* | Commuted version of cvrat4 37801. (Contributed by NM, 28-Jan-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΅ β§ π β π΄ β§ π β π΄)) β ((π β 0 β§ π β€ (π β¨ π)) β βπ β π΄ (π β€ π β§ π β€ (π β¨ π)))) | ||
Theorem | 2atjm 37803 | The meet of a line (expressed with 2 atoms) and a lattice element. (Contributed by NM, 30-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β€ π β§ Β¬ π β€ π)) β ((π β¨ π) β§ π) = π) | ||
Theorem | atbtwn 37804 | Property of a 3rd atom π on a line π β¨ π intersecting element π at π. (Contributed by NM, 30-Jul-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΅) β§ (π β€ π β§ Β¬ π β€ π β§ π β€ (π β¨ π))) β (π β π β Β¬ π β€ π)) | ||
Theorem | atbtwnexOLDN 37805* | There exists a 3rd atom π on a line π β¨ π intersecting element π at π, such that π is different from π and not in π. (Contributed by NM, 30-Jul-2012.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΅ β§ π β€ π β§ Β¬ π β€ π)) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ π β€ (π β¨ π))) | ||
Theorem | atbtwnex 37806* | Given atoms π in π and π not in π, there exists an atom π not in π such that the line π β¨ π intersects π at π. (Contributed by NM, 1-Aug-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΅ β§ π β€ π β§ Β¬ π β€ π)) β βπ β π΄ (π β π β§ Β¬ π β€ π β§ π β€ (π β¨ π))) | ||
Theorem | 3noncolr2 37807 | Two ways to express 3 non-colinear atoms (rotated right 2 places). (Contributed by NM, 12-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π ))) | ||
Theorem | 3noncolr1N 37808 | Two ways to express 3 non-colinear atoms (rotated right 1 place). (Contributed by NM, 12-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π))) | ||
Theorem | hlatcon3 37809 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π )) | ||
Theorem | hlatcon2 37810 | Atom exchange combined with contraposition. (Contributed by NM, 13-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π))) β Β¬ π β€ (π β¨ π)) | ||
Theorem | 4noncolr3 37811 | A way to express 4 non-colinear atoms (rotated right 3 places). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π))) | ||
Theorem | 4noncolr2 37812 | A way to express 4 non-colinear atoms (rotated right 2 places). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 4noncolr1 37813 | A way to express 4 non-colinear atoms (rotated right 1 places). (Contributed by NM, 11-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | athgt 37814* | A Hilbert lattice, whose height is at least 4, has a chain of 4 successively covering atom joins. (Contributed by NM, 3-May-2012.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β HL β βπ β π΄ βπ β π΄ (ππΆ(π β¨ π) β§ βπ β π΄ ((π β¨ π)πΆ((π β¨ π) β¨ π) β§ βπ β π΄ ((π β¨ π) β¨ π)πΆ(((π β¨ π) β¨ π) β¨ π )))) | ||
Theorem | 3dim0 37815* | There exists a 3-dimensional (height-4) element i.e. a volume. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (πΎ β HL β βπ β π΄ βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dimlem1 37816 | Lemma for 3dim1 37825. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((π β π β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β§ π = π) β (π β π β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π))) | ||
Theorem | 3dimlem2 37817 | Lemma for 3dim1 37825. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β§ (π β π β§ π β€ (π β¨ π ))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dimlem3a 37818 | Lemma for 3dim3 37827. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (Β¬ π β€ ((π β¨ π ) β¨ π) β§ Β¬ π β€ (π β¨ π ) β§ π β€ ((π β¨ π ) β¨ π))) β Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | 3dimlem3 37819 | Lemma for 3dim1 37825. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π ) β§ π β€ ((π β¨ π ) β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dimlem3OLDN 37820 | Lemma for 3dim1 37825. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ ((π β¨ π ) β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π ) β§ π β€ ((π β¨ π ) β¨ π))) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dimlem4a 37821 | Lemma for 3dim3 37827. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ (π β¨ π ) β§ Β¬ π β€ ((π β¨ π ) β¨ π))) β Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | 3dimlem4 37822 | Lemma for 3dim1 37825. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β§ (π β π β§ Β¬ π β€ (π β¨ π )) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dimlem4OLDN 37823 | Lemma for 3dim1 37825. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β§ (π β π β§ Β¬ π β€ (π β¨ π )) β§ Β¬ π β€ ((π β¨ π ) β¨ π)) β (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π ))) | ||
Theorem | 3dim1lem5 37824* | Lemma for 3dim1 37825. (Contributed by NM, 26-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((π’ β π΄ β§ π£ β π΄ β§ π€ β π΄) β§ (π β π’ β§ Β¬ π£ β€ (π β¨ π’) β§ Β¬ π€ β€ ((π β¨ π’) β¨ π£))) β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dim1 37825* | Construct a 3-dimensional volume (height-4 element) on top of a given atom π. (Contributed by NM, 25-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄) β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dim2 37826* | Construct 2 new layers on top of 2 given atoms. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β βπ β π΄ βπ β π΄ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ ((π β¨ π) β¨ π))) | ||
Theorem | 3dim3 37827* | Construct a new layer on top of 3 given atoms. (Contributed by NM, 27-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β βπ β π΄ Β¬ π β€ ((π β¨ π) β¨ π )) | ||
Theorem | 2dim 37828* | Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄) β βπ β π΄ βπ β π΄ (ππΆ(π β¨ π) β§ (π β¨ π)πΆ((π β¨ π) β¨ π))) | ||
Theorem | 1dimN 37829* | An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΄) β βπ β π΄ ππΆ(π β¨ π)) | ||
Theorem | 1cvrco 37830 | The orthocomplement of an element covered by 1 is an atom. (Contributed by NM, 7-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ 1 = (1.βπΎ) & β’ β₯ = (ocβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (ππΆ 1 β ( β₯ βπ) β π΄)) | ||
Theorem | 1cvratex 37831* | There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.) |
β’ π΅ = (BaseβπΎ) & β’ < = (ltβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ π β π΅ β§ ππΆ 1 ) β βπ β π΄ π < π) | ||
Theorem | 1cvratlt 37832 | An atom less than or equal to an element covered by 1 is less than the element. (Contributed by NM, 7-May-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ < = (ltβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΅) β§ (ππΆ 1 β§ π β€ π)) β π < π) | ||
Theorem | 1cvrjat 37833 | An element covered by the lattice unity, when joined with an atom not under it, equals the lattice unity. (Contributed by NM, 30-Apr-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΄) β§ (ππΆ 1 β§ Β¬ π β€ π)) β (π β¨ π) = 1 ) | ||
Theorem | 1cvrat 37834 | Create an atom under an element covered by the lattice unity. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 1 = (1.βπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΅) β§ (π β π β§ ππΆ 1 β§ Β¬ π β€ π)) β ((π β¨ π) β§ π) β π΄) | ||
Theorem | ps-1 37835 | The join of two atoms π β¨ π (specifying a projective geometry line) is determined uniquely by any two atoms (specifying two points) less than or equal to that join. Part of Lemma 16.4 of [MaedaMaeda] p. 69, showing projective space postulate PS1 in [MaedaMaeda] p. 67. (Contributed by NM, 15-Nov-2011.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π) β§ (π β π΄ β§ π β π΄)) β ((π β¨ π) β€ (π β¨ π) β (π β¨ π) = (π β¨ π))) | ||
Theorem | ps-2 37836* | Lattice analogue for the projective geometry axiom, "if a line intersects two sides of a triangle at different points then it also intersects the third side." Projective space condition PS2 in [MaedaMaeda] p. 68 and part of Theorem 16.4 in [MaedaMaeda] p. 69. (Contributed by NM, 1-Dec-2011.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ ((Β¬ π β€ (π β¨ π ) β§ π β π) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π )))) β βπ’ β π΄ (π’ β€ (π β¨ π ) β§ π’ β€ (π β¨ π))) | ||
Theorem | 2atjlej 37837 | Two atoms are different if their join majorizes the join of two different atoms. (Contributed by NM, 4-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β€ (π β¨ π))) β π β π) | ||
Theorem | hlatexch3N 37838 | Rearrange join of atoms in an equality. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ (π β¨ π) = (π β¨ π ))) β (π β¨ π) = (π β¨ π )) | ||
Theorem | hlatexch4 37839 | Exchange 2 atoms. (Contributed by NM, 13-May-2013.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ π β π β§ (π β¨ π) = (π β¨ π))) β (π β¨ π ) = (π β¨ π)) | ||
Theorem | ps-2b 37840 | Variation of projective geometry axiom ps-2 37836. (Contributed by NM, 3-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (Β¬ π β€ (π β¨ π ) β§ π β π β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π )))) β ((π β¨ π ) β§ (π β¨ π)) β 0 ) | ||
Theorem | 3atlem1 37841 | Lemma for 3at 37848. (Contributed by NM, 22-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem2 37842 | Lemma for 3at 37848. (Contributed by NM, 22-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ (π β π β§ π β€ (π β¨ π)) β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem3 37843 | Lemma for 3at 37848. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem4 37844 | Lemma for 3at 37848. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π )) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π )) | ||
Theorem | 3atlem5 37845 | Lemma for 3at 37848. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π β§ Β¬ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem6 37846 | Lemma for 3at 37848. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π β§ π β€ (π β¨ π)) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3atlem7 37847 | Lemma for 3at 37848. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π) β§ ((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π)) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π)) | ||
Theorem | 3at 37848 | Any three non-colinear atoms in a (lattice) plane determine the plane uniquely. This is the 2-dimensional analogue of ps-1 37835 for lines and 4at 37971 for volumes. I could not find this proof in the literature on projective geometry (where it is either given as an axiom or stated as an unproved fact), but it is similar to Theorem 15 of Veblen, "The Foundations of Geometry" (1911), p. 18, which uses different axioms. This proof was written before I became aware of Veblen's, and it is possible that a shorter proof could be obtained by using Veblen's proof for hints. (Contributed by NM, 23-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄)) β§ (Β¬ π β€ (π β¨ π) β§ π β π)) β (((π β¨ π) β¨ π ) β€ ((π β¨ π) β¨ π) β ((π β¨ π) β¨ π ) = ((π β¨ π) β¨ π))) | ||
Syntax | clln 37849 | Extend class notation with set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice. |
class LLines | ||
Syntax | clpl 37850 | Extend class notation with set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice. |
class LPlanes | ||
Syntax | clvol 37851 | Extend class notation with set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice. |
class LVols | ||
Syntax | clines 37852 | Extend class notation with set of all projective lines for a Hilbert lattice. |
class Lines | ||
Syntax | cpointsN 37853 | Extend class notation with set of all projective points. |
class Points | ||
Syntax | cpsubsp 37854 | Extend class notation with set of all projective subspaces. |
class PSubSp | ||
Syntax | cpmap 37855 | Extend class notation with projective map. |
class pmap | ||
Definition | df-llines 37856* | Define the set of all "lattice lines" (lattice elements which cover an atom) in a Hilbert lattice π, in other words all elements of height 2 (or lattice dimension 2 or projective dimension 1). (Contributed by NM, 16-Jun-2012.) |
β’ LLines = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (Atomsβπ)π( β βπ)π₯}) | ||
Definition | df-lplanes 37857* | Define the set of all "lattice planes" (lattice elements which cover a line) in a Hilbert lattice π, in other words all elements of height 3 (or lattice dimension 3 or projective dimension 2). (Contributed by NM, 16-Jun-2012.) |
β’ LPlanes = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LLinesβπ)π( β βπ)π₯}) | ||
Definition | df-lvols 37858* | Define the set of all 3-dimensional "lattice volumes" (lattice elements which cover a plane) in a Hilbert lattice π, in other words all elements of height 4 (or lattice dimension 4 or projective dimension 3). (Contributed by NM, 1-Jul-2012.) |
β’ LVols = (π β V β¦ {π₯ β (Baseβπ) β£ βπ β (LPlanesβπ)π( β βπ)π₯}) | ||
Definition | df-lines 37859* | Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of [Holland95] p. 222. (Contributed by NM, 19-Sep-2011.) |
β’ Lines = (π β V β¦ {π β£ βπ β (Atomsβπ)βπ β (Atomsβπ)(π β π β§ π = {π β (Atomsβπ) β£ π(leβπ)(π(joinβπ)π)})}) | ||
Definition | df-pointsN 37860* | Define set of all projective points in a Hilbert lattice (actually in any set at all, for simplicity). A projective point is the singleton of a lattice atom. Definition 15.1 of [MaedaMaeda] p. 61. Note that item 1 in [Holland95] p. 222 defines a point as the atom itself, but this leads to a complicated subspace ordering that may be either membership or inclusion based on its arguments. (Contributed by NM, 2-Oct-2011.) |
β’ Points = (π β V β¦ {π β£ βπ β (Atomsβπ)π = {π}}) | ||
Definition | df-psubsp 37861* | Define set of all projective subspaces. Based on definition of subspace in [Holland95] p. 212. (Contributed by NM, 2-Oct-2011.) |
β’ PSubSp = (π β V β¦ {π β£ (π β (Atomsβπ) β§ βπ β π βπ β π βπ β (Atomsβπ)(π(leβπ)(π(joinβπ)π) β π β π ))}) | ||
Definition | df-pmap 37862* | Define projective map for π at π. Definition in Theorem 15.5 of [MaedaMaeda] p. 62. (Contributed by NM, 2-Oct-2011.) |
β’ pmap = (π β V β¦ (π β (Baseβπ) β¦ {π β (Atomsβπ) β£ π(leβπ)π})) | ||
Theorem | llnset 37863* | The set of lattice lines in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (πΎ β π· β π = {π₯ β π΅ β£ βπ β π΄ ππΆπ₯}) | ||
Theorem | islln 37864* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (πΎ β π· β (π β π β (π β π΅ β§ βπ β π΄ ππΆπ))) | ||
Theorem | islln4 37865* | The predicate "is a lattice line". (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β π· β§ π β π΅) β (π β π β βπ β π΄ ππΆπ)) | ||
Theorem | llni 37866 | Condition implying a lattice line. (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β π· β§ π β π΅ β§ π β π΄) β§ ππΆπ) β π β π) | ||
Theorem | llnbase 37867 | A lattice line is a lattice element. (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π = (LLinesβπΎ) β β’ (π β π β π β π΅) | ||
Theorem | islln3 37868* | The predicate "is a lattice line". (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ β π΄ βπ β π΄ (π β π β§ π = (π β¨ π)))) | ||
Theorem | islln2 37869* | The predicate "is a lattice line". (Contributed by NM, 23-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (πΎ β HL β (π β π β (π β π΅ β§ βπ β π΄ βπ β π΄ (π β π β§ π = (π β¨ π))))) | ||
Theorem | llni2 37870 | The join of two different atoms is a lattice line. (Contributed by NM, 26-Jun-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ π β π) β (π β¨ π) β π) | ||
Theorem | llnnleat 37871 | An atom cannot majorize a lattice line. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π΄) β Β¬ π β€ π) | ||
Theorem | llnneat 37872 | A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π) β Β¬ π β π΄) | ||
Theorem | 2atneat 37873 | The join of two distinct atoms is not an atom. (Contributed by NM, 12-Oct-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π)) β Β¬ (π β¨ π) β π΄) | ||
Theorem | llnn0 37874 | A lattice line is nonzero. (Contributed by NM, 15-Jul-2012.) |
β’ 0 = (0.βπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π) β π β 0 ) | ||
Theorem | islln2a 37875 | The predicate "is a lattice line" in terms of atoms. (Contributed by NM, 15-Jul-2012.) |
β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β ((π β¨ π) β π β π β π)) | ||
Theorem | llnle 37876* | Any element greater than 0 and not an atom majorizes a lattice line. (Contributed by NM, 28-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΅) β§ (π β 0 β§ Β¬ π β π΄)) β βπ¦ β π π¦ β€ π) | ||
Theorem | atcvrlln2 37877 | An atom under a line is covered by it. (Contributed by NM, 2-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π) β§ π β€ π) β ππΆπ) | ||
Theorem | atcvrlln 37878 | An element covering an atom is a lattice line and vice-versa. (Contributed by NM, 18-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π΅ β§ π β π΅) β§ ππΆπ) β (π β π΄ β π β π)) | ||
Theorem | llnexatN 37879* | Given an atom on a line, there is another atom whose join equals the line. (Contributed by NM, 26-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π΄) β§ π β€ π) β βπ β π΄ (π β π β§ π = (π β¨ π))) | ||
Theorem | llncmp 37880 | If two lattice lines are comparable, they are equal. (Contributed by NM, 19-Jun-2012.) |
β’ β€ = (leβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β (π β€ π β π = π)) | ||
Theorem | llnnlt 37881 | Two lattice lines cannot satisfy the less than relation. (Contributed by NM, 26-Jun-2012.) |
β’ < = (ltβπΎ) & β’ π = (LLinesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π < π) | ||
Theorem | 2llnmat 37882 | Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.) |
β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (π β π β§ (π β§ π) β 0 )) β (π β§ π) β π΄) | ||
Theorem | 2at0mat0 37883 | Special case of 2atmat0 37884 where one atom could be zero. (Contributed by NM, 30-May-2013.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ (π β π΄ β¨ π = 0 ) β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) | ||
Theorem | 2atmat0 37884 | The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.) |
β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) | ||
Theorem | 2atm 37885 | An atom majorized by two different atom joins (which could be atoms or lines) is equal to their intersection. (Contributed by NM, 30-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π) β§ (π β¨ π) β (π β¨ π))) β π = ((π β¨ π) β§ (π β¨ π))) | ||
Theorem | ps-2c 37886 | Variation of projective geometry axiom ps-2 37836. (Contributed by NM, 3-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ ((Β¬ π β€ (π β¨ π ) β§ π β π) β§ (π β¨ π ) β (π β¨ π) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π )))) β ((π β¨ π ) β§ (π β¨ π)) β π΄) | ||
Theorem | lplnset 37887* | The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β π΄ β π = {π₯ β π΅ β£ βπ¦ β π π¦πΆπ₯}) | ||
Theorem | islpln 37888* | The predicate "is a lattice plane". (Contributed by NM, 16-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β π΄ β (π β π β (π β π΅ β§ βπ¦ β π π¦πΆπ))) | ||
Theorem | islpln4 37889* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β π΄ β§ π β π΅) β (π β π β βπ¦ β π π¦πΆπ)) | ||
Theorem | lplni 37890 | Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ πΆ = ( β βπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β π· β§ π β π΅ β§ π β π) β§ ππΆπ) β π β π) | ||
Theorem | islpln3 37891* | The predicate "is a lattice plane". (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ¦ β π βπ β π΄ (Β¬ π β€ π¦ β§ π = (π¦ β¨ π)))) | ||
Theorem | lplnbase 37892 | A lattice plane is a lattice element. (Contributed by NM, 17-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ π = (LPlanesβπΎ) β β’ (π β π β π β π΅) | ||
Theorem | islpln5 37893* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 24-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π΅) β (π β π β βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π)))) | ||
Theorem | islpln2 37894* | The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ (πΎ β HL β (π β π β (π β π΅ β§ βπ β π΄ βπ β π΄ βπ β π΄ (π β π β§ Β¬ π β€ (π β¨ π) β§ π = ((π β¨ π) β¨ π))))) | ||
Theorem | lplni2 37895 | The join of 3 different atoms is a lattice plane. (Contributed by NM, 4-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ Β¬ π β€ (π β¨ π ))) β ((π β¨ π ) β¨ π) β π) | ||
Theorem | lvolex3N 37896* | There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π) β βπ β π΄ Β¬ π β€ π) | ||
Theorem | llnmlplnN 37897 | The intersection of a line with a plane not containing it is an atom. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π β§ π β π) β§ (Β¬ π β€ π β§ (π β§ π) β 0 )) β (π β§ π) β π΄) | ||
Theorem | lplnle 37898* | Any element greater than 0 and not an atom and not a lattice line majorizes a lattice plane. (Contributed by NM, 28-Jun-2012.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ 0 = (0.βπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LLinesβπΎ) & β’ π = (LPlanesβπΎ) β β’ (((πΎ β HL β§ π β π΅) β§ (π β 0 β§ Β¬ π β π΄ β§ Β¬ π β π)) β βπ¦ β π π¦ β€ π) | ||
Theorem | lplnnle2at 37899 | A lattice line (or atom) cannot majorize a lattice plane. (Contributed by NM, 8-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ (π β π β§ π β π΄ β§ π β π΄)) β Β¬ π β€ (π β¨ π )) | ||
Theorem | lplnnleat 37900 | A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012.) |
β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = (LPlanesβπΎ) β β’ ((πΎ β HL β§ π β π β§ π β π΄) β Β¬ π β€ π) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |