Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-comember Structured version   Visualization version   GIF version

Definition df-comember 36886
Description: Define the comember equivalence relation on the class 𝐴 (or, the restricted coelement equivalence relation on its domain quotient 𝐴.) Alternate definitions are dfcomember2 36893 and dfcomember3 36894.

Later on, in an application of set theory I make a distinction between the default elementhood concept and a special membership concept: membership equivalence relation will be an integral part of that membership concept. (Contributed by Peter Mazsa, 26-Jun-2021.) (Revised by Peter Mazsa, 28-Nov-2022.)

Assertion
Ref Expression
df-comember ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)

Detailed syntax breakdown of Definition df-comember
StepHypRef Expression
1 cA . . 3 class 𝐴
21wcomember 36415 . 2 wff CoMembEr 𝐴
3 cep 5505 . . . . . 6 class E
43ccnv 5599 . . . . 5 class E
54, 1cres 5602 . . . 4 class ( E ↾ 𝐴)
65ccoss 36387 . . 3 class ≀ ( E ↾ 𝐴)
71, 6werALTV 36413 . 2 wff ≀ ( E ↾ 𝐴) ErALTV 𝐴
82, 7wb 205 1 wff ( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
Colors of variables: wff setvar class
This definition is referenced by:  dfcomember  36892  mpet2  37060
  Copyright terms: Public domain W3C validator