| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-erALTV | Structured version Visualization version GIF version | ||
| Description: Equivalence relation with natural domain predicate, see also the comment of df-ers 38686. Alternate definition is dferALTV2 38691. Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets, see brerser 38700. (Contributed by Peter Mazsa, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| df-erALTV | ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | werALTV 38230 | . 2 wff 𝑅 ErALTV 𝐴 |
| 4 | 2 | weqvrel 38221 | . . 3 wff EqvRel 𝑅 |
| 5 | 1, 2 | wdmqs 38228 | . . 3 wff 𝑅 DomainQs 𝐴 |
| 6 | 4, 5 | wa 395 | . 2 wff ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴) |
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dferALTV2 38691 brerser 38700 |
| Copyright terms: Public domain | W3C validator |