|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-erALTV | Structured version Visualization version GIF version | ||
| Description: Equivalence relation with natural domain predicate, see also the comment of df-ers 38664. Alternate definition is dferALTV2 38669. Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when 𝐴 and 𝑅 are sets, see brerser 38678. (Contributed by Peter Mazsa, 12-Aug-2021.) | 
| Ref | Expression | 
|---|---|
| df-erALTV | ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cR | . . 3 class 𝑅 | |
| 3 | 1, 2 | werALTV 38208 | . 2 wff 𝑅 ErALTV 𝐴 | 
| 4 | 2 | weqvrel 38199 | . . 3 wff EqvRel 𝑅 | 
| 5 | 1, 2 | wdmqs 38206 | . . 3 wff 𝑅 DomainQs 𝐴 | 
| 6 | 4, 5 | wa 395 | . 2 wff ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴) | 
| 7 | 3, 6 | wb 206 | 1 wff (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: dferALTV2 38669 brerser 38678 | 
| Copyright terms: Public domain | W3C validator |