Detailed syntax breakdown of Definition df-comf
| Step | Hyp | Ref
| Expression |
| 1 | | ccomf 17710 |
. 2
class
compf |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | vy |
. . . 4
setvar 𝑦 |
| 6 | 2 | cv 1539 |
. . . . . 6
class 𝑐 |
| 7 | | cbs 17247 |
. . . . . 6
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . . 5
class
(Base‘𝑐) |
| 9 | 8, 8 | cxp 5683 |
. . . 4
class
((Base‘𝑐)
× (Base‘𝑐)) |
| 10 | | vg |
. . . . 5
setvar 𝑔 |
| 11 | | vf |
. . . . 5
setvar 𝑓 |
| 12 | 4 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 13 | | c2nd 8013 |
. . . . . . 7
class
2nd |
| 14 | 12, 13 | cfv 6561 |
. . . . . 6
class
(2nd ‘𝑥) |
| 15 | 5 | cv 1539 |
. . . . . 6
class 𝑦 |
| 16 | | chom 17308 |
. . . . . . 7
class
Hom |
| 17 | 6, 16 | cfv 6561 |
. . . . . 6
class (Hom
‘𝑐) |
| 18 | 14, 15, 17 | co 7431 |
. . . . 5
class
((2nd ‘𝑥)(Hom ‘𝑐)𝑦) |
| 19 | 12, 17 | cfv 6561 |
. . . . 5
class ((Hom
‘𝑐)‘𝑥) |
| 20 | 10 | cv 1539 |
. . . . . 6
class 𝑔 |
| 21 | 11 | cv 1539 |
. . . . . 6
class 𝑓 |
| 22 | | cco 17309 |
. . . . . . . 8
class
comp |
| 23 | 6, 22 | cfv 6561 |
. . . . . . 7
class
(comp‘𝑐) |
| 24 | 12, 15, 23 | co 7431 |
. . . . . 6
class (𝑥(comp‘𝑐)𝑦) |
| 25 | 20, 21, 24 | co 7431 |
. . . . 5
class (𝑔(𝑥(comp‘𝑐)𝑦)𝑓) |
| 26 | 10, 11, 18, 19, 25 | cmpo 7433 |
. . . 4
class (𝑔 ∈ ((2nd
‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)) |
| 27 | 4, 5, 9, 8, 26 | cmpo 7433 |
. . 3
class (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))) |
| 28 | 2, 3, 27 | cmpt 5225 |
. 2
class (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) |
| 29 | 1, 28 | wceq 1540 |
1
wff
compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) |