Detailed syntax breakdown of Definition df-comf
Step | Hyp | Ref
| Expression |
1 | | ccomf 17376 |
. 2
class
compf |
2 | | vc |
. . 3
setvar 𝑐 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | vy |
. . . 4
setvar 𝑦 |
6 | 2 | cv 1538 |
. . . . . 6
class 𝑐 |
7 | | cbs 16912 |
. . . . . 6
class
Base |
8 | 6, 7 | cfv 6433 |
. . . . 5
class
(Base‘𝑐) |
9 | 8, 8 | cxp 5587 |
. . . 4
class
((Base‘𝑐)
× (Base‘𝑐)) |
10 | | vg |
. . . . 5
setvar 𝑔 |
11 | | vf |
. . . . 5
setvar 𝑓 |
12 | 4 | cv 1538 |
. . . . . . 7
class 𝑥 |
13 | | c2nd 7830 |
. . . . . . 7
class
2nd |
14 | 12, 13 | cfv 6433 |
. . . . . 6
class
(2nd ‘𝑥) |
15 | 5 | cv 1538 |
. . . . . 6
class 𝑦 |
16 | | chom 16973 |
. . . . . . 7
class
Hom |
17 | 6, 16 | cfv 6433 |
. . . . . 6
class (Hom
‘𝑐) |
18 | 14, 15, 17 | co 7275 |
. . . . 5
class
((2nd ‘𝑥)(Hom ‘𝑐)𝑦) |
19 | 12, 17 | cfv 6433 |
. . . . 5
class ((Hom
‘𝑐)‘𝑥) |
20 | 10 | cv 1538 |
. . . . . 6
class 𝑔 |
21 | 11 | cv 1538 |
. . . . . 6
class 𝑓 |
22 | | cco 16974 |
. . . . . . . 8
class
comp |
23 | 6, 22 | cfv 6433 |
. . . . . . 7
class
(comp‘𝑐) |
24 | 12, 15, 23 | co 7275 |
. . . . . 6
class (𝑥(comp‘𝑐)𝑦) |
25 | 20, 21, 24 | co 7275 |
. . . . 5
class (𝑔(𝑥(comp‘𝑐)𝑦)𝑓) |
26 | 10, 11, 18, 19, 25 | cmpo 7277 |
. . . 4
class (𝑔 ∈ ((2nd
‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)) |
27 | 4, 5, 9, 8, 26 | cmpo 7277 |
. . 3
class (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))) |
28 | 2, 3, 27 | cmpt 5157 |
. 2
class (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) |
29 | 1, 28 | wceq 1539 |
1
wff
compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) |