Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. . 3
⊢ (𝑐 = 𝐶 → (Base‘𝑐) ∈ V) |
2 | | fveq2 6756 |
. . . 4
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
3 | | iscat.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
4 | 2, 3 | eqtr4di 2797 |
. . 3
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | | fvexd 6771 |
. . . 4
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V) |
6 | | simpl 482 |
. . . . . 6
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → 𝑐 = 𝐶) |
7 | 6 | fveq2d 6760 |
. . . . 5
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶)) |
8 | | iscat.h |
. . . . 5
⊢ 𝐻 = (Hom ‘𝐶) |
9 | 7, 8 | eqtr4di 2797 |
. . . 4
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻) |
10 | | fvexd 6771 |
. . . . 5
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (comp‘𝑐) ∈ V) |
11 | | simpll 763 |
. . . . . . 7
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → 𝑐 = 𝐶) |
12 | 11 | fveq2d 6760 |
. . . . . 6
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (comp‘𝑐) = (comp‘𝐶)) |
13 | | iscat.o |
. . . . . 6
⊢ · =
(comp‘𝐶) |
14 | 12, 13 | eqtr4di 2797 |
. . . . 5
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (comp‘𝑐) = · ) |
15 | | simpllr 772 |
. . . . . 6
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → 𝑏 = 𝐵) |
16 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → ℎ = 𝐻) |
17 | 16 | oveqd 7272 |
. . . . . . . 8
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑥ℎ𝑥) = (𝑥𝐻𝑥)) |
18 | 16 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑦ℎ𝑥) = (𝑦𝐻𝑥)) |
19 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → 𝑜 = · ) |
20 | 19 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(〈𝑦, 𝑥〉𝑜𝑥) = (〈𝑦, 𝑥〉 · 𝑥)) |
21 | 20 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = (𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓)) |
22 | 21 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → ((𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ↔ (𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓)) |
23 | 18, 22 | raleqbidv 3327 |
. . . . . . . . . 10
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓)) |
24 | 16 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑥ℎ𝑦) = (𝑥𝐻𝑦)) |
25 | 19 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(〈𝑥, 𝑥〉𝑜𝑦) = (〈𝑥, 𝑥〉 · 𝑦)) |
26 | 25 | oveqd 7272 |
. . . . . . . . . . . 12
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = (𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔)) |
27 | 26 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → ((𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓 ↔ (𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)) |
28 | 24, 27 | raleqbidv 3327 |
. . . . . . . . . 10
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓)) |
29 | 23, 28 | anbi12d 630 |
. . . . . . . . 9
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
((∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓))) |
30 | 15, 29 | raleqbidv 3327 |
. . . . . . . 8
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓))) |
31 | 17, 30 | rexeqbidv 3328 |
. . . . . . 7
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ↔ ∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓))) |
32 | 16 | oveqd 7272 |
. . . . . . . . . . 11
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑦ℎ𝑧) = (𝑦𝐻𝑧)) |
33 | 19 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(〈𝑥, 𝑦〉𝑜𝑧) = (〈𝑥, 𝑦〉 · 𝑧)) |
34 | 33 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) = (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)) |
35 | 16 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑥ℎ𝑧) = (𝑥𝐻𝑧)) |
36 | 34, 35 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → ((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ↔ (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧))) |
37 | 16 | oveqd 7272 |
. . . . . . . . . . . . . 14
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑧ℎ𝑤) = (𝑧𝐻𝑤)) |
38 | 19 | oveqd 7272 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(〈𝑥, 𝑦〉𝑜𝑤) = (〈𝑥, 𝑦〉 · 𝑤)) |
39 | 19 | oveqd 7272 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(〈𝑦, 𝑧〉𝑜𝑤) = (〈𝑦, 𝑧〉 · 𝑤)) |
40 | 39 | oveqd 7272 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔) = (𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)) |
41 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → 𝑓 = 𝑓) |
42 | 38, 40, 41 | oveq123d 7276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → ((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓)) |
43 | 19 | oveqd 7272 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(〈𝑥, 𝑧〉𝑜𝑤) = (〈𝑥, 𝑧〉 · 𝑤)) |
44 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → 𝑘 = 𝑘) |
45 | 43, 44, 34 | oveq123d 7276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) |
46 | 42, 45 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)) ↔ ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))) |
47 | 37, 46 | raleqbidv 3327 |
. . . . . . . . . . . . 13
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)) ↔ ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))) |
48 | 15, 47 | raleqbidv 3327 |
. . . . . . . . . . . 12
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)) ↔ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))) |
49 | 36, 48 | anbi12d 630 |
. . . . . . . . . . 11
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) → (((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))) ↔ ((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))))) |
50 | 32, 49 | raleqbidv 3327 |
. . . . . . . . . 10
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))))) |
51 | 24, 50 | raleqbidv 3327 |
. . . . . . . . 9
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))))) |
52 | 15, 51 | raleqbidv 3327 |
. . . . . . . 8
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))) ↔ ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))))) |
53 | 15, 52 | raleqbidv 3327 |
. . . . . . 7
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))))) |
54 | 31, 53 | anbi12d 630 |
. . . . . 6
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
((∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) |
55 | 15, 54 | raleqbidv 3327 |
. . . . 5
⊢ ((((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) ∧ 𝑜 = · ) →
(∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)))) ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) |
56 | 10, 14, 55 | sbcied2 3758 |
. . . 4
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → ([(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)))) ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) |
57 | 5, 9, 56 | sbcied2 3758 |
. . 3
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → ([(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)))) ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) |
58 | 1, 4, 57 | sbcied2 3758 |
. 2
⊢ (𝑐 = 𝐶 → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓)))) ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) |
59 | | df-cat 17294 |
. 2
⊢ Cat =
{𝑐 ∣
[(Base‘𝑐) /
𝑏][(Hom
‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))))} |
60 | 58, 59 | elab2g 3604 |
1
⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ 𝐵 (∃𝑔 ∈ (𝑥𝐻𝑥)∀𝑦 ∈ 𝐵 (∀𝑓 ∈ (𝑦𝐻𝑥)(𝑔(〈𝑦, 𝑥〉 · 𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝐻𝑦)(𝑓(〈𝑥, 𝑥〉 · 𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)((𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧) ∧ ∀𝑤 ∈ 𝐵 ∀𝑘 ∈ (𝑧𝐻𝑤)((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)))))) |