Detailed syntax breakdown of Definition df-homf
| Step | Hyp | Ref
| Expression |
| 1 | | chomf 17709 |
. 2
class
Homf |
| 2 | | vc |
. . 3
setvar 𝑐 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vx |
. . . 4
setvar 𝑥 |
| 5 | | vy |
. . . 4
setvar 𝑦 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑐 |
| 7 | | cbs 17247 |
. . . . 5
class
Base |
| 8 | 6, 7 | cfv 6561 |
. . . 4
class
(Base‘𝑐) |
| 9 | 4 | cv 1539 |
. . . . 5
class 𝑥 |
| 10 | 5 | cv 1539 |
. . . . 5
class 𝑦 |
| 11 | | chom 17308 |
. . . . . 6
class
Hom |
| 12 | 6, 11 | cfv 6561 |
. . . . 5
class (Hom
‘𝑐) |
| 13 | 9, 10, 12 | co 7431 |
. . . 4
class (𝑥(Hom ‘𝑐)𝑦) |
| 14 | 4, 5, 8, 8, 13 | cmpo 7433 |
. . 3
class (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)) |
| 15 | 2, 3, 14 | cmpt 5225 |
. 2
class (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) |
| 16 | 1, 15 | wceq 1540 |
1
wff
Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) |