MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval Structured version   Visualization version   GIF version

Theorem comfffval 17712
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
Assertion
Ref Expression
comfffval 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑓,𝑔,𝑥,𝑦,𝐶   · ,𝑓,𝑔,𝑥   𝑓,𝐻,𝑔,𝑥
Allowed substitution hints:   𝐵(𝑓,𝑔)   · (𝑦)   𝐻(𝑦)   𝑂(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem comfffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 comfffval.o . 2 𝑂 = (compf𝐶)
2 fveq2 6886 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 comfffval.b . . . . . . 7 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2787 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
54sqxpeqd 5697 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
6 fveq2 6886 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
7 comfffval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
86, 7eqtr4di 2787 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
98oveqd 7430 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑥)(Hom ‘𝑐)𝑦) = ((2nd𝑥)𝐻𝑦))
108fveq1d 6888 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
11 fveq2 6886 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
12 comfffval.x . . . . . . . . 9 · = (comp‘𝐶)
1311, 12eqtr4di 2787 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1413oveqd 7430 . . . . . . 7 (𝑐 = 𝐶 → (𝑥(comp‘𝑐)𝑦) = (𝑥 · 𝑦))
1514oveqd 7430 . . . . . 6 (𝑐 = 𝐶 → (𝑔(𝑥(comp‘𝑐)𝑦)𝑓) = (𝑔(𝑥 · 𝑦)𝑓))
169, 10, 15mpoeq123dv 7490 . . . . 5 (𝑐 = 𝐶 → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)) = (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
175, 4, 16mpoeq123dv 7490 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
18 df-comf 17685 . . . 4 compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))))
193fvexi 6900 . . . . . 6 𝐵 ∈ V
2019, 19xpex 7755 . . . . 5 (𝐵 × 𝐵) ∈ V
2120, 19mpoex 8086 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) ∈ V
2217, 18, 21fvmpt 6996 . . 3 (𝐶 ∈ V → (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
23 fvprc 6878 . . . 4 𝐶 ∈ V → (compf𝐶) = ∅)
24 fvprc 6878 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
253, 24eqtrid 2781 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
2625olcd 874 . . . . 5 𝐶 ∈ V → ((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅))
27 0mpo0 7498 . . . . 5 (((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = ∅)
2826, 27syl 17 . . . 4 𝐶 ∈ V → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = ∅)
2923, 28eqtr4d 2772 . . 3 𝐶 ∈ V → (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
3022, 29pm2.61i 182 . 2 (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
311, 30eqtri 2757 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1539  wcel 2107  Vcvv 3463  c0 4313   × cxp 5663  cfv 6541  (class class class)co 7413  cmpo 7415  2nd c2nd 7995  Basecbs 17229  Hom chom 17284  compcco 17285  compfccomf 17681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-comf 17685
This theorem is referenced by:  comffval  17713  comfffval2  17715  comfffn  17718  comfeq  17720
  Copyright terms: Public domain W3C validator