MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  comfffval Structured version   Visualization version   GIF version

Theorem comfffval 17665
Description: Value of the functionalized composition operation. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.)
Hypotheses
Ref Expression
comfffval.o 𝑂 = (compf𝐶)
comfffval.b 𝐵 = (Base‘𝐶)
comfffval.h 𝐻 = (Hom ‘𝐶)
comfffval.x · = (comp‘𝐶)
Assertion
Ref Expression
comfffval 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑓,𝑔,𝑥,𝑦,𝐶   · ,𝑓,𝑔,𝑥   𝑓,𝐻,𝑔,𝑥
Allowed substitution hints:   𝐵(𝑓,𝑔)   · (𝑦)   𝐻(𝑦)   𝑂(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem comfffval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 comfffval.o . 2 𝑂 = (compf𝐶)
2 fveq2 6860 . . . . . . 7 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 comfffval.b . . . . . . 7 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2783 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
54sqxpeqd 5672 . . . . 5 (𝑐 = 𝐶 → ((Base‘𝑐) × (Base‘𝑐)) = (𝐵 × 𝐵))
6 fveq2 6860 . . . . . . . 8 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
7 comfffval.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
86, 7eqtr4di 2783 . . . . . . 7 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
98oveqd 7406 . . . . . 6 (𝑐 = 𝐶 → ((2nd𝑥)(Hom ‘𝑐)𝑦) = ((2nd𝑥)𝐻𝑦))
108fveq1d 6862 . . . . . 6 (𝑐 = 𝐶 → ((Hom ‘𝑐)‘𝑥) = (𝐻𝑥))
11 fveq2 6860 . . . . . . . . 9 (𝑐 = 𝐶 → (comp‘𝑐) = (comp‘𝐶))
12 comfffval.x . . . . . . . . 9 · = (comp‘𝐶)
1311, 12eqtr4di 2783 . . . . . . . 8 (𝑐 = 𝐶 → (comp‘𝑐) = · )
1413oveqd 7406 . . . . . . 7 (𝑐 = 𝐶 → (𝑥(comp‘𝑐)𝑦) = (𝑥 · 𝑦))
1514oveqd 7406 . . . . . 6 (𝑐 = 𝐶 → (𝑔(𝑥(comp‘𝑐)𝑦)𝑓) = (𝑔(𝑥 · 𝑦)𝑓))
169, 10, 15mpoeq123dv 7466 . . . . 5 (𝑐 = 𝐶 → (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)) = (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
175, 4, 16mpoeq123dv 7466 . . . 4 (𝑐 = 𝐶 → (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
18 df-comf 17638 . . . 4 compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))))
193fvexi 6874 . . . . . 6 𝐵 ∈ V
2019, 19xpex 7731 . . . . 5 (𝐵 × 𝐵) ∈ V
2120, 19mpoex 8060 . . . 4 (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) ∈ V
2217, 18, 21fvmpt 6970 . . 3 (𝐶 ∈ V → (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
23 fvprc 6852 . . . 4 𝐶 ∈ V → (compf𝐶) = ∅)
24 fvprc 6852 . . . . . . 7 𝐶 ∈ V → (Base‘𝐶) = ∅)
253, 24eqtrid 2777 . . . . . 6 𝐶 ∈ V → 𝐵 = ∅)
2625olcd 874 . . . . 5 𝐶 ∈ V → ((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅))
27 0mpo0 7474 . . . . 5 (((𝐵 × 𝐵) = ∅ ∨ 𝐵 = ∅) → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = ∅)
2826, 27syl 17 . . . 4 𝐶 ∈ V → (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))) = ∅)
2923, 28eqtr4d 2768 . . 3 𝐶 ∈ V → (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓))))
3022, 29pm2.61i 182 . 2 (compf𝐶) = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
311, 30eqtri 2753 1 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦𝐵 ↦ (𝑔 ∈ ((2nd𝑥)𝐻𝑦), 𝑓 ∈ (𝐻𝑥) ↦ (𝑔(𝑥 · 𝑦)𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 847   = wceq 1540  wcel 2109  Vcvv 3450  c0 4298   × cxp 5638  cfv 6513  (class class class)co 7389  cmpo 7391  2nd c2nd 7969  Basecbs 17185  Hom chom 17237  compcco 17238  compfccomf 17634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-comf 17638
This theorem is referenced by:  comffval  17666  comfffval2  17668  comfffn  17671  comfeq  17673
  Copyright terms: Public domain W3C validator