Detailed syntax breakdown of Definition df-concat
| Step | Hyp | Ref
| Expression |
| 1 | | cconcat 14593 |
. 2
class
++ |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vx |
. . . 4
setvar 𝑥 |
| 6 | | cc0 11134 |
. . . . 5
class
0 |
| 7 | 2 | cv 1539 |
. . . . . . 7
class 𝑠 |
| 8 | | chash 14353 |
. . . . . . 7
class
♯ |
| 9 | 7, 8 | cfv 6536 |
. . . . . 6
class
(♯‘𝑠) |
| 10 | 3 | cv 1539 |
. . . . . . 7
class 𝑡 |
| 11 | 10, 8 | cfv 6536 |
. . . . . 6
class
(♯‘𝑡) |
| 12 | | caddc 11137 |
. . . . . 6
class
+ |
| 13 | 9, 11, 12 | co 7410 |
. . . . 5
class
((♯‘𝑠) +
(♯‘𝑡)) |
| 14 | | cfzo 13676 |
. . . . 5
class
..^ |
| 15 | 6, 13, 14 | co 7410 |
. . . 4
class
(0..^((♯‘𝑠) + (♯‘𝑡))) |
| 16 | 5 | cv 1539 |
. . . . . 6
class 𝑥 |
| 17 | 6, 9, 14 | co 7410 |
. . . . . 6
class
(0..^(♯‘𝑠)) |
| 18 | 16, 17 | wcel 2109 |
. . . . 5
wff 𝑥 ∈
(0..^(♯‘𝑠)) |
| 19 | 16, 7 | cfv 6536 |
. . . . 5
class (𝑠‘𝑥) |
| 20 | | cmin 11471 |
. . . . . . 7
class
− |
| 21 | 16, 9, 20 | co 7410 |
. . . . . 6
class (𝑥 − (♯‘𝑠)) |
| 22 | 21, 10 | cfv 6536 |
. . . . 5
class (𝑡‘(𝑥 − (♯‘𝑠))) |
| 23 | 18, 19, 22 | cif 4505 |
. . . 4
class if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) |
| 24 | 5, 15, 23 | cmpt 5206 |
. . 3
class (𝑥 ∈
(0..^((♯‘𝑠) +
(♯‘𝑡))) ↦
if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) |
| 25 | 2, 3, 4, 4, 24 | cmpo 7412 |
. 2
class (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
| 26 | 1, 25 | wceq 1540 |
1
wff ++ =
(𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈
(0..^((♯‘𝑠) +
(♯‘𝑡))) ↦
if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |