MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Structured version   Visualization version   GIF version

Theorem ccatfval 14529
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ccatfval
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 3487 . 2 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6885 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
4 fveq2 6885 . . . . . 6 (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇))
53, 4oveqan12d 7424 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7421 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
73oveq2d 7421 . . . . . . 7 (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆)))
87eleq2d 2813 . . . . . 6 (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
98adantr 480 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
10 fveq1 6884 . . . . . 6 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
1110adantr 480 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠𝑥) = (𝑆𝑥))
12 simpr 484 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
133oveq2d 7421 . . . . . . 7 (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1413adantr 480 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1512, 14fveq12d 6892 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆))))
169, 11, 15ifbieq12d 4551 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
176, 16mpteq12dv 5232 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
18 df-concat 14527 . . 3 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
19 ovex 7438 . . . 4 (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V
2019mptex 7220 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V
2117, 18, 20ovmpoa 7559 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
221, 2, 21syl2an 595 1 ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3468  ifcif 4523  cmpt 5224  cfv 6537  (class class class)co 7405  0cc0 11112   + caddc 11115  cmin 11448  ..^cfzo 13633  chash 14295   ++ cconcat 14526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-concat 14527
This theorem is referenced by:  ccatcl  14530  ccatlen  14531  ccatval1  14533  ccatval2  14534  ccatvalfn  14537  ccatalpha  14549  repswccat  14742  ccatco  14792  ofccat  14922  ccatmulgnn0dir  34083
  Copyright terms: Public domain W3C validator