| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ccatfval | Structured version Visualization version GIF version | ||
| Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| ccatfval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 2 | elex 3468 | . 2 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
| 3 | fveq2 6858 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆)) | |
| 4 | fveq2 6858 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇)) | |
| 5 | 3, 4 | oveqan12d 7406 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇))) |
| 6 | 5 | oveq2d 7403 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇)))) |
| 7 | 3 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆))) |
| 8 | 7 | eleq2d 2814 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
| 10 | fveq1 6857 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠‘𝑥) = (𝑆‘𝑥)) |
| 12 | simpr 484 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) | |
| 13 | 3 | oveq2d 7403 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆))) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆))) |
| 15 | 12, 14 | fveq12d 6865 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆)))) |
| 16 | 9, 11, 15 | ifbieq12d 4517 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) |
| 17 | 6, 16 | mpteq12dv 5194 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| 18 | df-concat 14536 | . . 3 ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) | |
| 19 | ovex 7420 | . . . 4 ⊢ (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V | |
| 20 | 19 | mptex 7197 | . . 3 ⊢ (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V |
| 21 | 17, 18, 20 | ovmpoa 7544 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| 22 | 1, 2, 21 | syl2an 596 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0cc0 11068 + caddc 11071 − cmin 11405 ..^cfzo 13615 ♯chash 14295 ++ cconcat 14535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-concat 14536 |
| This theorem is referenced by: ccatcl 14539 ccatlen 14540 ccatval1 14542 ccatval2 14543 ccatvalfn 14546 ccatalpha 14558 repswccat 14751 ccatco 14801 ofccat 14935 ccatws1f1o 32873 ccatmulgnn0dir 34533 |
| Copyright terms: Public domain | W3C validator |