![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatfval | Structured version Visualization version GIF version |
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
ccatfval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3487 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 3487 | . 2 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
3 | fveq2 6885 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆)) | |
4 | fveq2 6885 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇)) | |
5 | 3, 4 | oveqan12d 7424 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇))) |
6 | 5 | oveq2d 7421 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇)))) |
7 | 3 | oveq2d 7421 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆))) |
8 | 7 | eleq2d 2813 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
10 | fveq1 6884 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠‘𝑥) = (𝑆‘𝑥)) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) | |
13 | 3 | oveq2d 7421 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆))) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆))) |
15 | 12, 14 | fveq12d 6892 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆)))) |
16 | 9, 11, 15 | ifbieq12d 4551 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) |
17 | 6, 16 | mpteq12dv 5232 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
18 | df-concat 14527 | . . 3 ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) | |
19 | ovex 7438 | . . . 4 ⊢ (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V | |
20 | 19 | mptex 7220 | . . 3 ⊢ (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V |
21 | 17, 18, 20 | ovmpoa 7559 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
22 | 1, 2, 21 | syl2an 595 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ifcif 4523 ↦ cmpt 5224 ‘cfv 6537 (class class class)co 7405 0cc0 11112 + caddc 11115 − cmin 11448 ..^cfzo 13633 ♯chash 14295 ++ cconcat 14526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-concat 14527 |
This theorem is referenced by: ccatcl 14530 ccatlen 14531 ccatval1 14533 ccatval2 14534 ccatvalfn 14537 ccatalpha 14549 repswccat 14742 ccatco 14792 ofccat 14922 ccatmulgnn0dir 34083 |
Copyright terms: Public domain | W3C validator |