MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Structured version   Visualization version   GIF version

Theorem ccatfval 14565
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ccatfval
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 3492 . 2 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6902 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
4 fveq2 6902 . . . . . 6 (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇))
53, 4oveqan12d 7445 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7442 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
73oveq2d 7442 . . . . . . 7 (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆)))
87eleq2d 2815 . . . . . 6 (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
98adantr 479 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
10 fveq1 6901 . . . . . 6 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
1110adantr 479 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠𝑥) = (𝑆𝑥))
12 simpr 483 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
133oveq2d 7442 . . . . . . 7 (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1413adantr 479 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1512, 14fveq12d 6909 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆))))
169, 11, 15ifbieq12d 4560 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
176, 16mpteq12dv 5243 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
18 df-concat 14563 . . 3 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
19 ovex 7459 . . . 4 (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V
2019mptex 7241 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V
2117, 18, 20ovmpoa 7583 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
221, 2, 21syl2an 594 1 ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  ifcif 4532  cmpt 5235  cfv 6553  (class class class)co 7426  0cc0 11148   + caddc 11151  cmin 11484  ..^cfzo 13669  chash 14331   ++ cconcat 14562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-concat 14563
This theorem is referenced by:  ccatcl  14566  ccatlen  14567  ccatval1  14569  ccatval2  14570  ccatvalfn  14573  ccatalpha  14585  repswccat  14778  ccatco  14828  ofccat  14958  ccatmulgnn0dir  34215
  Copyright terms: Public domain W3C validator