MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Structured version   Visualization version   GIF version

Theorem ccatfval 14559
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ccatfval
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 3480 . 2 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6896 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
4 fveq2 6896 . . . . . 6 (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇))
53, 4oveqan12d 7438 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7435 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
73oveq2d 7435 . . . . . . 7 (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆)))
87eleq2d 2811 . . . . . 6 (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
98adantr 479 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
10 fveq1 6895 . . . . . 6 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
1110adantr 479 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠𝑥) = (𝑆𝑥))
12 simpr 483 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
133oveq2d 7435 . . . . . . 7 (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1413adantr 479 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1512, 14fveq12d 6903 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆))))
169, 11, 15ifbieq12d 4558 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
176, 16mpteq12dv 5240 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
18 df-concat 14557 . . 3 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
19 ovex 7452 . . . 4 (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V
2019mptex 7235 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V
2117, 18, 20ovmpoa 7576 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
221, 2, 21syl2an 594 1 ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  ifcif 4530  cmpt 5232  cfv 6549  (class class class)co 7419  0cc0 11140   + caddc 11143  cmin 11476  ..^cfzo 13662  chash 14325   ++ cconcat 14556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-concat 14557
This theorem is referenced by:  ccatcl  14560  ccatlen  14561  ccatval1  14563  ccatval2  14564  ccatvalfn  14567  ccatalpha  14579  repswccat  14772  ccatco  14822  ofccat  14952  ccatws1f1o  32761  ccatmulgnn0dir  34302
  Copyright terms: Public domain W3C validator