![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ccatfval | Structured version Visualization version GIF version |
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
Ref | Expression |
---|---|
ccatfval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
2 | elex 3509 | . 2 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
3 | fveq2 6920 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆)) | |
4 | fveq2 6920 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇)) | |
5 | 3, 4 | oveqan12d 7467 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇))) |
6 | 5 | oveq2d 7464 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇)))) |
7 | 3 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆))) |
8 | 7 | eleq2d 2830 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆)))) |
10 | fveq1 6919 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑥) = (𝑆‘𝑥)) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑠‘𝑥) = (𝑆‘𝑥)) |
12 | simpr 484 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → 𝑡 = 𝑇) | |
13 | 3 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆))) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆))) |
15 | 12, 14 | fveq12d 6927 | . . . . 5 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆)))) |
16 | 9, 11, 15 | ifbieq12d 4576 | . . . 4 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) |
17 | 6, 16 | mpteq12dv 5257 | . . 3 ⊢ ((𝑠 = 𝑆 ∧ 𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
18 | df-concat 14619 | . . 3 ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) | |
19 | ovex 7481 | . . . 4 ⊢ (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V | |
20 | 19 | mptex 7260 | . . 3 ⊢ (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V |
21 | 17, 18, 20 | ovmpoa 7605 | . 2 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
22 | 1, 2, 21 | syl2an 595 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ifcif 4548 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 0cc0 11184 + caddc 11187 − cmin 11520 ..^cfzo 13711 ♯chash 14379 ++ cconcat 14618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-concat 14619 |
This theorem is referenced by: ccatcl 14622 ccatlen 14623 ccatval1 14625 ccatval2 14626 ccatvalfn 14629 ccatalpha 14641 repswccat 14834 ccatco 14884 ofccat 15018 ccatws1f1o 32918 ccatmulgnn0dir 34519 |
Copyright terms: Public domain | W3C validator |