MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfval Structured version   Visualization version   GIF version

Theorem ccatfval 14519
Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
ccatfval ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ccatfval
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑆𝑉𝑆 ∈ V)
2 elex 3492 . 2 (𝑇𝑊𝑇 ∈ V)
3 fveq2 6888 . . . . . 6 (𝑠 = 𝑆 → (♯‘𝑠) = (♯‘𝑆))
4 fveq2 6888 . . . . . 6 (𝑡 = 𝑇 → (♯‘𝑡) = (♯‘𝑇))
53, 4oveqan12d 7424 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → ((♯‘𝑠) + (♯‘𝑡)) = ((♯‘𝑆) + (♯‘𝑇)))
65oveq2d 7421 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → (0..^((♯‘𝑠) + (♯‘𝑡))) = (0..^((♯‘𝑆) + (♯‘𝑇))))
73oveq2d 7421 . . . . . . 7 (𝑠 = 𝑆 → (0..^(♯‘𝑠)) = (0..^(♯‘𝑆)))
87eleq2d 2819 . . . . . 6 (𝑠 = 𝑆 → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
98adantr 481 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^(♯‘𝑠)) ↔ 𝑥 ∈ (0..^(♯‘𝑆))))
10 fveq1 6887 . . . . . 6 (𝑠 = 𝑆 → (𝑠𝑥) = (𝑆𝑥))
1110adantr 481 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑠𝑥) = (𝑆𝑥))
12 simpr 485 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → 𝑡 = 𝑇)
133oveq2d 7421 . . . . . . 7 (𝑠 = 𝑆 → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1413adantr 481 . . . . . 6 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 − (♯‘𝑠)) = (𝑥 − (♯‘𝑆)))
1512, 14fveq12d 6895 . . . . 5 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑡‘(𝑥 − (♯‘𝑠))) = (𝑇‘(𝑥 − (♯‘𝑆))))
169, 11, 15ifbieq12d 4555 . . . 4 ((𝑠 = 𝑆𝑡 = 𝑇) → if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))) = if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))
176, 16mpteq12dv 5238 . . 3 ((𝑠 = 𝑆𝑡 = 𝑇) → (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
18 df-concat 14517 . . 3 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
19 ovex 7438 . . . 4 (0..^((♯‘𝑆) + (♯‘𝑇))) ∈ V
2019mptex 7221 . . 3 (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))) ∈ V
2117, 18, 20ovmpoa 7559 . 2 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
221, 2, 21syl2an 596 1 ((𝑆𝑉𝑇𝑊) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆𝑥), (𝑇‘(𝑥 − (♯‘𝑆))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  ifcif 4527  cmpt 5230  cfv 6540  (class class class)co 7405  0cc0 11106   + caddc 11109  cmin 11440  ..^cfzo 13623  chash 14286   ++ cconcat 14516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-concat 14517
This theorem is referenced by:  ccatcl  14520  ccatlen  14521  ccatval1  14523  ccatval2  14524  ccatvalfn  14527  ccatalpha  14539  repswccat  14732  ccatco  14782  ofccat  14912  ccatmulgnn0dir  33541
  Copyright terms: Public domain W3C validator