MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfn Structured version   Visualization version   GIF version

Theorem ccatfn 14595
Description: The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015.) (Proof shortened by AV, 29-Apr-2020.)
Assertion
Ref Expression
ccatfn ++ Fn (V × V)

Proof of Theorem ccatfn
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-concat 14594 . 2 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
2 ovex 7443 . . 3 (0..^((♯‘𝑠) + (♯‘𝑡))) ∈ V
32mptex 7220 . 2 (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) ∈ V
41, 3fnmpoi 8074 1 ++ Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3464  ifcif 4505  cmpt 5206   × cxp 5657   Fn wfn 6531  cfv 6536  (class class class)co 7410  0cc0 11134   + caddc 11137  cmin 11471  ..^cfzo 13676  chash 14353   ++ cconcat 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-concat 14594
This theorem is referenced by:  frmdplusg  18837  elrgspnlem2  33243
  Copyright terms: Public domain W3C validator