MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatfn Structured version   Visualization version   GIF version

Theorem ccatfn 14575
Description: The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015.) (Proof shortened by AV, 29-Apr-2020.)
Assertion
Ref Expression
ccatfn ++ Fn (V × V)

Proof of Theorem ccatfn
Dummy variables 𝑡 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-concat 14574 . 2 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
2 ovex 7449 . . 3 (0..^((♯‘𝑠) + (♯‘𝑡))) ∈ V
32mptex 7232 . 2 (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))) ∈ V
41, 3fnmpoi 8076 1 ++ Fn (V × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  Vcvv 3462  ifcif 4523  cmpt 5228   × cxp 5672   Fn wfn 6541  cfv 6546  (class class class)co 7416  0cc0 11149   + caddc 11152  cmin 11485  ..^cfzo 13675  chash 14342   ++ cconcat 14573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-concat 14574
This theorem is referenced by:  frmdplusg  18839
  Copyright terms: Public domain W3C validator