Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-tanh Structured version   Visualization version   GIF version

Definition df-tanh 48827
Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt 5249, which requires the form (𝑥𝐴𝐵). (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
df-tanh tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))

Detailed syntax breakdown of Definition df-tanh
StepHypRef Expression
1 ctanh 48824 . 2 class tanh
2 vx . . 3 setvar 𝑥
3 ccosh 48823 . . . . 5 class cosh
43ccnv 5699 . . . 4 class cosh
5 cc 11182 . . . . 5 class
6 cc0 11184 . . . . . 6 class 0
76csn 4648 . . . . 5 class {0}
85, 7cdif 3973 . . . 4 class (ℂ ∖ {0})
94, 8cima 5703 . . 3 class (cosh “ (ℂ ∖ {0}))
10 ci 11186 . . . . . 6 class i
112cv 1536 . . . . . 6 class 𝑥
12 cmul 11189 . . . . . 6 class ·
1310, 11, 12co 7448 . . . . 5 class (i · 𝑥)
14 ctan 16113 . . . . 5 class tan
1513, 14cfv 6573 . . . 4 class (tan‘(i · 𝑥))
16 cdiv 11947 . . . 4 class /
1715, 10, 16co 7448 . . 3 class ((tan‘(i · 𝑥)) / i)
182, 9, 17cmpt 5249 . 2 class (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
191, 18wceq 1537 1 wff tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  tanhval-named  48830
  Copyright terms: Public domain W3C validator