Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-tanh | Structured version Visualization version GIF version |
Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt 5153, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
df-tanh | ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctanh 46320 | . 2 class tanh | |
2 | vx | . . 3 setvar 𝑥 | |
3 | ccosh 46319 | . . . . 5 class cosh | |
4 | 3 | ccnv 5579 | . . . 4 class ◡cosh |
5 | cc 10800 | . . . . 5 class ℂ | |
6 | cc0 10802 | . . . . . 6 class 0 | |
7 | 6 | csn 4558 | . . . . 5 class {0} |
8 | 5, 7 | cdif 3880 | . . . 4 class (ℂ ∖ {0}) |
9 | 4, 8 | cima 5583 | . . 3 class (◡cosh “ (ℂ ∖ {0})) |
10 | ci 10804 | . . . . . 6 class i | |
11 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
12 | cmul 10807 | . . . . . 6 class · | |
13 | 10, 11, 12 | co 7255 | . . . . 5 class (i · 𝑥) |
14 | ctan 15703 | . . . . 5 class tan | |
15 | 13, 14 | cfv 6418 | . . . 4 class (tan‘(i · 𝑥)) |
16 | cdiv 11562 | . . . 4 class / | |
17 | 15, 10, 16 | co 7255 | . . 3 class ((tan‘(i · 𝑥)) / i) |
18 | 2, 9, 17 | cmpt 5153 | . 2 class (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) |
19 | 1, 18 | wceq 1539 | 1 wff tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) |
Colors of variables: wff setvar class |
This definition is referenced by: tanhval-named 46326 |
Copyright terms: Public domain | W3C validator |