Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-tanh Structured version   Visualization version   GIF version

Definition df-tanh 49860
Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt 5174, which requires the form (𝑥𝐴𝐵). (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
df-tanh tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))

Detailed syntax breakdown of Definition df-tanh
StepHypRef Expression
1 ctanh 49857 . 2 class tanh
2 vx . . 3 setvar 𝑥
3 ccosh 49856 . . . . 5 class cosh
43ccnv 5618 . . . 4 class cosh
5 cc 11011 . . . . 5 class
6 cc0 11013 . . . . . 6 class 0
76csn 4575 . . . . 5 class {0}
85, 7cdif 3895 . . . 4 class (ℂ ∖ {0})
94, 8cima 5622 . . 3 class (cosh “ (ℂ ∖ {0}))
10 ci 11015 . . . . . 6 class i
112cv 1540 . . . . . 6 class 𝑥
12 cmul 11018 . . . . . 6 class ·
1310, 11, 12co 7352 . . . . 5 class (i · 𝑥)
14 ctan 15974 . . . . 5 class tan
1513, 14cfv 6486 . . . 4 class (tan‘(i · 𝑥))
16 cdiv 11781 . . . 4 class /
1715, 10, 16co 7352 . . 3 class ((tan‘(i · 𝑥)) / i)
182, 9, 17cmpt 5174 . 2 class (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
191, 18wceq 1541 1 wff tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
Colors of variables: wff setvar class
This definition is referenced by:  tanhval-named  49863
  Copyright terms: Public domain W3C validator