|   | Mathbox for David A. Wheeler | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-tanh | Structured version Visualization version GIF version | ||
| Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt 5225, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by David A. Wheeler, 10-May-2015.) | 
| Ref | Expression | 
|---|---|
| df-tanh | ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctanh 49251 | . 2 class tanh | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | ccosh 49250 | . . . . 5 class cosh | |
| 4 | 3 | ccnv 5684 | . . . 4 class ◡cosh | 
| 5 | cc 11153 | . . . . 5 class ℂ | |
| 6 | cc0 11155 | . . . . . 6 class 0 | |
| 7 | 6 | csn 4626 | . . . . 5 class {0} | 
| 8 | 5, 7 | cdif 3948 | . . . 4 class (ℂ ∖ {0}) | 
| 9 | 4, 8 | cima 5688 | . . 3 class (◡cosh “ (ℂ ∖ {0})) | 
| 10 | ci 11157 | . . . . . 6 class i | |
| 11 | 2 | cv 1539 | . . . . . 6 class 𝑥 | 
| 12 | cmul 11160 | . . . . . 6 class · | |
| 13 | 10, 11, 12 | co 7431 | . . . . 5 class (i · 𝑥) | 
| 14 | ctan 16101 | . . . . 5 class tan | |
| 15 | 13, 14 | cfv 6561 | . . . 4 class (tan‘(i · 𝑥)) | 
| 16 | cdiv 11920 | . . . 4 class / | |
| 17 | 15, 10, 16 | co 7431 | . . 3 class ((tan‘(i · 𝑥)) / i) | 
| 18 | 2, 9, 17 | cmpt 5225 | . 2 class (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | 
| 19 | 1, 18 | wceq 1540 | 1 wff tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: tanhval-named 49257 | 
| Copyright terms: Public domain | W3C validator |