| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-tanh | Structured version Visualization version GIF version | ||
| Description: Define the hyperbolic tangent function (tanh). We define it this way for cmpt 5196, which requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| df-tanh | ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctanh 49598 | . 2 class tanh | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | ccosh 49597 | . . . . 5 class cosh | |
| 4 | 3 | ccnv 5645 | . . . 4 class ◡cosh |
| 5 | cc 11084 | . . . . 5 class ℂ | |
| 6 | cc0 11086 | . . . . . 6 class 0 | |
| 7 | 6 | csn 4597 | . . . . 5 class {0} |
| 8 | 5, 7 | cdif 3919 | . . . 4 class (ℂ ∖ {0}) |
| 9 | 4, 8 | cima 5649 | . . 3 class (◡cosh “ (ℂ ∖ {0})) |
| 10 | ci 11088 | . . . . . 6 class i | |
| 11 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 12 | cmul 11091 | . . . . . 6 class · | |
| 13 | 10, 11, 12 | co 7394 | . . . . 5 class (i · 𝑥) |
| 14 | ctan 16038 | . . . . 5 class tan | |
| 15 | 13, 14 | cfv 6519 | . . . 4 class (tan‘(i · 𝑥)) |
| 16 | cdiv 11851 | . . . 4 class / | |
| 17 | 15, 10, 16 | co 7394 | . . 3 class ((tan‘(i · 𝑥)) / i) |
| 18 | 2, 9, 17 | cmpt 5196 | . 2 class (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) |
| 19 | 1, 18 | wceq 1540 | 1 wff tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: tanhval-named 49604 |
| Copyright terms: Public domain | W3C validator |