Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coshval-named | Structured version Visualization version GIF version |
Description: Value of the named cosh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-cosh 46436. See coshval 15864 for a theorem to convert this further. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
coshval-named | ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . 3 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6778 | . 2 ⊢ (𝑥 = 𝐴 → (cos‘(i · 𝑥)) = (cos‘(i · 𝐴))) |
3 | df-cosh 46436 | . 2 ⊢ cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) | |
4 | fvex 6787 | . 2 ⊢ (cos‘(i · 𝐴)) ∈ V | |
5 | 2, 3, 4 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ici 10873 · cmul 10876 cosccos 15774 coshccosh 46433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-cosh 46436 |
This theorem is referenced by: sinhpcosh 46442 |
Copyright terms: Public domain | W3C validator |