| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coshval-named | Structured version Visualization version GIF version | ||
| Description: Value of the named cosh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-cosh 49318. See coshval 16158 for a theorem to convert this further. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| coshval-named | ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7407 | . . 3 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | 1 | fveq2d 6876 | . 2 ⊢ (𝑥 = 𝐴 → (cos‘(i · 𝑥)) = (cos‘(i · 𝐴))) |
| 3 | df-cosh 49318 | . 2 ⊢ cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥))) | |
| 4 | fvex 6885 | . 2 ⊢ (cos‘(i · 𝐴)) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6982 | 1 ⊢ (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 ℂcc 11119 ici 11123 · cmul 11126 cosccos 16067 coshccosh 49315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-ov 7402 df-cosh 49318 |
| This theorem is referenced by: sinhpcosh 49324 |
| Copyright terms: Public domain | W3C validator |