Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coshval-named Structured version   Visualization version   GIF version

Theorem coshval-named 49321
Description: Value of the named cosh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-cosh 49318. See coshval 16158 for a theorem to convert this further. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
coshval-named (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴)))

Proof of Theorem coshval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7407 . . 3 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6876 . 2 (𝑥 = 𝐴 → (cos‘(i · 𝑥)) = (cos‘(i · 𝐴)))
3 df-cosh 49318 . 2 cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥)))
4 fvex 6885 . 2 (cos‘(i · 𝐴)) ∈ V
52, 3, 4fvmpt 6982 1 (𝐴 ∈ ℂ → (cosh‘𝐴) = (cos‘(i · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6527  (class class class)co 7399  cc 11119  ici 11123   · cmul 11126  cosccos 16067  coshccosh 49315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-ov 7402  df-cosh 49318
This theorem is referenced by:  sinhpcosh  49324
  Copyright terms: Public domain W3C validator