Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotval Structured version   Visualization version   GIF version

Theorem cotval 46337
Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cotval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))

Proof of Theorem cotval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 3002 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3617 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6756 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
5 fveq2 6756 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
64, 5oveq12d 7273 . . 3 (𝑥 = 𝐴 → ((cos‘𝑥) / (sin‘𝑥)) = ((cos‘𝐴) / (sin‘𝐴)))
7 df-cot 46334 . . 3 cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥)))
8 ovex 7288 . . 3 ((cos‘𝐴) / (sin‘𝐴)) ∈ V
96, 7, 8fvmpt 6857 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
103, 9sylbir 234 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   / cdiv 11562  sincsin 15701  cosccos 15702  cotccot 46331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-cot 46334
This theorem is referenced by:  cotcl  46340  recotcl  46343  reccot  46346  rectan  46347  cotsqcscsq  46350
  Copyright terms: Public domain W3C validator