Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotval Structured version   Visualization version   GIF version

Theorem cotval 49268
Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cotval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))

Proof of Theorem cotval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 3000 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3692 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6906 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
5 fveq2 6906 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
64, 5oveq12d 7449 . . 3 (𝑥 = 𝐴 → ((cos‘𝑥) / (sin‘𝑥)) = ((cos‘𝐴) / (sin‘𝐴)))
7 df-cot 49265 . . 3 cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥)))
8 ovex 7464 . . 3 ((cos‘𝐴) / (sin‘𝐴)) ∈ V
96, 7, 8fvmpt 7016 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
103, 9sylbir 235 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155   / cdiv 11920  sincsin 16099  cosccos 16100  cotccot 49262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-cot 49265
This theorem is referenced by:  cotcl  49271  recotcl  49274  reccot  49277  rectan  49278  cotsqcscsq  49281
  Copyright terms: Public domain W3C validator