| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cotval | Structured version Visualization version GIF version | ||
| Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| cotval | ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . . 4 ⊢ (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴)) | |
| 2 | 1 | neeq1d 2991 | . . 3 ⊢ (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0)) |
| 3 | 2 | elrab 3671 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0)) |
| 4 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
| 5 | fveq2 6876 | . . . 4 ⊢ (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴)) | |
| 6 | 4, 5 | oveq12d 7423 | . . 3 ⊢ (𝑥 = 𝐴 → ((cos‘𝑥) / (sin‘𝑥)) = ((cos‘𝐴) / (sin‘𝐴))) |
| 7 | df-cot 49610 | . . 3 ⊢ cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥))) | |
| 8 | ovex 7438 | . . 3 ⊢ ((cos‘𝐴) / (sin‘𝐴)) ∈ V | |
| 9 | 6, 7, 8 | fvmpt 6986 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴))) |
| 10 | 3, 9 | sylbir 235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 {crab 3415 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 / cdiv 11894 sincsin 16079 cosccos 16080 cotccot 49607 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-cot 49610 |
| This theorem is referenced by: cotcl 49616 recotcl 49619 reccot 49622 rectan 49623 cotsqcscsq 49626 |
| Copyright terms: Public domain | W3C validator |