Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotval Structured version   Visualization version   GIF version

Theorem cotval 49780
Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cotval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))

Proof of Theorem cotval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6822 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 2987 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3647 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6822 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
5 fveq2 6822 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
64, 5oveq12d 7364 . . 3 (𝑥 = 𝐴 → ((cos‘𝑥) / (sin‘𝑥)) = ((cos‘𝐴) / (sin‘𝐴)))
7 df-cot 49777 . . 3 cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥)))
8 ovex 7379 . . 3 ((cos‘𝐴) / (sin‘𝐴)) ∈ V
96, 7, 8fvmpt 6929 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
103, 9sylbir 235 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003   / cdiv 11771  sincsin 15967  cosccos 15968  cotccot 49774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-cot 49777
This theorem is referenced by:  cotcl  49783  recotcl  49786  reccot  49789  rectan  49790  cotsqcscsq  49793
  Copyright terms: Public domain W3C validator