Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotval Structured version   Visualization version   GIF version

Theorem cotval 49613
Description: Value of the cotangent function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
cotval ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))

Proof of Theorem cotval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6876 . . . 4 (𝑦 = 𝐴 → (sin‘𝑦) = (sin‘𝐴))
21neeq1d 2991 . . 3 (𝑦 = 𝐴 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝐴) ≠ 0))
32elrab 3671 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0))
4 fveq2 6876 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
5 fveq2 6876 . . . 4 (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴))
64, 5oveq12d 7423 . . 3 (𝑥 = 𝐴 → ((cos‘𝑥) / (sin‘𝑥)) = ((cos‘𝐴) / (sin‘𝐴)))
7 df-cot 49610 . . 3 cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥)))
8 ovex 7438 . . 3 ((cos‘𝐴) / (sin‘𝐴)) ∈ V
96, 7, 8fvmpt 6986 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
103, 9sylbir 235 1 ((𝐴 ∈ ℂ ∧ (sin‘𝐴) ≠ 0) → (cot‘𝐴) = ((cos‘𝐴) / (sin‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  cfv 6531  (class class class)co 7405  cc 11127  0cc0 11129   / cdiv 11894  sincsin 16079  cosccos 16080  cotccot 49607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-cot 49610
This theorem is referenced by:  cotcl  49616  recotcl  49619  reccot  49622  rectan  49623  cotsqcscsq  49626
  Copyright terms: Public domain W3C validator