| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > secval | Structured version Visualization version GIF version | ||
| Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| secval | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . 4 ⊢ (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴)) | |
| 2 | 1 | neeq1d 2987 | . . 3 ⊢ (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
| 3 | 2 | elrab 3647 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) |
| 4 | fveq2 6822 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
| 5 | 4 | oveq2d 7362 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴))) |
| 6 | df-sec 49775 | . . 3 ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥))) | |
| 7 | ovex 7379 | . . 3 ⊢ (1 / (cos‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴))) |
| 9 | 3, 8 | sylbir 235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 / cdiv 11771 cosccos 15968 seccsec 49772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-sec 49775 |
| This theorem is referenced by: seccl 49781 reseccl 49784 recsec 49787 sec0 49791 onetansqsecsq 49792 |
| Copyright terms: Public domain | W3C validator |