Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  secval Structured version   Visualization version   GIF version

Theorem secval 48839
Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
secval ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))

Proof of Theorem secval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . 4 (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴))
21neeq1d 3006 . . 3 (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
32elrab 3708 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0))
4 fveq2 6920 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
54oveq2d 7464 . . 3 (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴)))
6 df-sec 48836 . . 3 sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥)))
7 ovex 7481 . . 3 (1 / (cos‘𝐴)) ∈ V
85, 6, 7fvmpt 7029 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴)))
93, 8sylbir 235 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   / cdiv 11947  cosccos 16112  seccsec 48833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-sec 48836
This theorem is referenced by:  seccl  48842  reseccl  48845  recsec  48848  sec0  48852  onetansqsecsq  48853
  Copyright terms: Public domain W3C validator