![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > secval | Structured version Visualization version GIF version |
Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
Ref | Expression |
---|---|
secval | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6843 | . . . 4 ⊢ (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴)) | |
2 | 1 | neeq1d 3000 | . . 3 ⊢ (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
3 | 2 | elrab 3646 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) |
4 | fveq2 6843 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
5 | 4 | oveq2d 7374 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴))) |
6 | df-sec 47275 | . . 3 ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥))) | |
7 | ovex 7391 | . . 3 ⊢ (1 / (cos‘𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6949 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴))) |
9 | 3, 8 | sylbir 234 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 {crab 3406 ‘cfv 6497 (class class class)co 7358 ℂcc 11054 0cc0 11056 1c1 11057 / cdiv 11817 cosccos 15952 seccsec 47272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 df-sec 47275 |
This theorem is referenced by: seccl 47281 reseccl 47284 recsec 47287 sec0 47291 onetansqsecsq 47292 |
Copyright terms: Public domain | W3C validator |