![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > secval | Structured version Visualization version GIF version |
Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
Ref | Expression |
---|---|
secval | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴)) | |
2 | 1 | neeq1d 3006 | . . 3 ⊢ (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
3 | 2 | elrab 3708 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) |
4 | fveq2 6920 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
5 | 4 | oveq2d 7464 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴))) |
6 | df-sec 48836 | . . 3 ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥))) | |
7 | ovex 7481 | . . 3 ⊢ (1 / (cos‘𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 7029 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴))) |
9 | 3, 8 | sylbir 235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 / cdiv 11947 cosccos 16112 seccsec 48833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-sec 48836 |
This theorem is referenced by: seccl 48842 reseccl 48845 recsec 48848 sec0 48852 onetansqsecsq 48853 |
Copyright terms: Public domain | W3C validator |