![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > secval | Structured version Visualization version GIF version |
Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
Ref | Expression |
---|---|
secval | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6448 | . . . 4 ⊢ (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴)) | |
2 | 1 | neeq1d 3028 | . . 3 ⊢ (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
3 | 2 | elrab 3572 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) |
4 | fveq2 6448 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
5 | 4 | oveq2d 6940 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴))) |
6 | df-sec 43603 | . . 3 ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥))) | |
7 | ovex 6956 | . . 3 ⊢ (1 / (cos‘𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6544 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴))) |
9 | 3, 8 | sylbir 227 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 {crab 3094 ‘cfv 6137 (class class class)co 6924 ℂcc 10272 0cc0 10274 1c1 10275 / cdiv 11034 cosccos 15201 seccsec 43600 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-iota 6101 df-fun 6139 df-fv 6145 df-ov 6927 df-sec 43603 |
This theorem is referenced by: seccl 43609 reseccl 43612 recsec 43615 sec0 43619 onetansqsecsq 43620 |
Copyright terms: Public domain | W3C validator |