| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > secval | Structured version Visualization version GIF version | ||
| Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| secval | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . . 4 ⊢ (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴)) | |
| 2 | 1 | neeq1d 2988 | . . 3 ⊢ (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
| 3 | 2 | elrab 3643 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) |
| 4 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
| 5 | 4 | oveq2d 7368 | . . 3 ⊢ (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴))) |
| 6 | df-sec 49869 | . . 3 ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥))) | |
| 7 | ovex 7385 | . . 3 ⊢ (1 / (cos‘𝐴)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6935 | . 2 ⊢ (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴))) |
| 9 | 3, 8 | sylbir 235 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 / cdiv 11781 cosccos 15973 seccsec 49866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-sec 49869 |
| This theorem is referenced by: seccl 49875 reseccl 49878 recsec 49881 sec0 49885 onetansqsecsq 49886 |
| Copyright terms: Public domain | W3C validator |