Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  secval Structured version   Visualization version   GIF version

Theorem secval 48978
Description: Value of the secant function. (Contributed by David A. Wheeler, 14-Mar-2014.)
Assertion
Ref Expression
secval ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))

Proof of Theorem secval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . . 4 (𝑦 = 𝐴 → (cos‘𝑦) = (cos‘𝐴))
21neeq1d 2998 . . 3 (𝑦 = 𝐴 → ((cos‘𝑦) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
32elrab 3695 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0))
4 fveq2 6907 . . . 4 (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴))
54oveq2d 7447 . . 3 (𝑥 = 𝐴 → (1 / (cos‘𝑥)) = (1 / (cos‘𝐴)))
6 df-sec 48975 . . 3 sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥)))
7 ovex 7464 . . 3 (1 / (cos‘𝐴)) ∈ V
85, 6, 7fvmpt 7016 . 2 (𝐴 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} → (sec‘𝐴) = (1 / (cos‘𝐴)))
93, 8sylbir 235 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sec‘𝐴) = (1 / (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cfv 6563  (class class class)co 7431  cc 11151  0cc0 11153  1c1 11154   / cdiv 11918  cosccos 16097  seccsec 48972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-sec 48975
This theorem is referenced by:  seccl  48981  reseccl  48984  recsec  48987  sec0  48991  onetansqsecsq  48992
  Copyright terms: Public domain W3C validator