MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cpmat2mat Structured version   Visualization version   GIF version

Definition df-cpmat2mat 22646
Description: Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat, see m2cpminv 22698, it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019.)
Assertion
Ref Expression
df-cpmat2mat cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Distinct variable group:   𝑚,𝑛,𝑟,𝑥,𝑦

Detailed syntax breakdown of Definition df-cpmat2mat
StepHypRef Expression
1 ccpmat2mat 22643 . 2 class cPolyMatToMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cfn 8959 . . 3 class Fin
5 cvv 3459 . . 3 class V
6 vm . . . 4 setvar 𝑚
72cv 1539 . . . . 5 class 𝑛
83cv 1539 . . . . 5 class 𝑟
9 ccpmat 22641 . . . . 5 class ConstPolyMat
107, 8, 9co 7405 . . . 4 class (𝑛 ConstPolyMat 𝑟)
11 vx . . . . 5 setvar 𝑥
12 vy . . . . 5 setvar 𝑦
13 cc0 11129 . . . . . 6 class 0
1411cv 1539 . . . . . . . 8 class 𝑥
1512cv 1539 . . . . . . . 8 class 𝑦
166cv 1539 . . . . . . . 8 class 𝑚
1714, 15, 16co 7405 . . . . . . 7 class (𝑥𝑚𝑦)
18 cco1 22113 . . . . . . 7 class coe1
1917, 18cfv 6531 . . . . . 6 class (coe1‘(𝑥𝑚𝑦))
2013, 19cfv 6531 . . . . 5 class ((coe1‘(𝑥𝑚𝑦))‘0)
2111, 12, 7, 7, 20cmpo 7407 . . . 4 class (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))
226, 10, 21cmpt 5201 . . 3 class (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))
232, 3, 4, 5, 22cmpo 7407 . 2 class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
241, 23wceq 1540 1 wff cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Colors of variables: wff setvar class
This definition is referenced by:  cpm2mfval  22687
  Copyright terms: Public domain W3C validator