MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cpmat2mat Structured version   Visualization version   GIF version

Definition df-cpmat2mat 21765
Description: Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat, see m2cpminv 21817, it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019.)
Assertion
Ref Expression
df-cpmat2mat cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Distinct variable group:   𝑚,𝑛,𝑟,𝑥,𝑦

Detailed syntax breakdown of Definition df-cpmat2mat
StepHypRef Expression
1 ccpmat2mat 21762 . 2 class cPolyMatToMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cfn 8691 . . 3 class Fin
5 cvv 3422 . . 3 class V
6 vm . . . 4 setvar 𝑚
72cv 1538 . . . . 5 class 𝑛
83cv 1538 . . . . 5 class 𝑟
9 ccpmat 21760 . . . . 5 class ConstPolyMat
107, 8, 9co 7255 . . . 4 class (𝑛 ConstPolyMat 𝑟)
11 vx . . . . 5 setvar 𝑥
12 vy . . . . 5 setvar 𝑦
13 cc0 10802 . . . . . 6 class 0
1411cv 1538 . . . . . . . 8 class 𝑥
1512cv 1538 . . . . . . . 8 class 𝑦
166cv 1538 . . . . . . . 8 class 𝑚
1714, 15, 16co 7255 . . . . . . 7 class (𝑥𝑚𝑦)
18 cco1 21259 . . . . . . 7 class coe1
1917, 18cfv 6418 . . . . . 6 class (coe1‘(𝑥𝑚𝑦))
2013, 19cfv 6418 . . . . 5 class ((coe1‘(𝑥𝑚𝑦))‘0)
2111, 12, 7, 7, 20cmpo 7257 . . . 4 class (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))
226, 10, 21cmpt 5153 . . 3 class (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))
232, 3, 4, 5, 22cmpo 7257 . 2 class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
241, 23wceq 1539 1 wff cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Colors of variables: wff setvar class
This definition is referenced by:  cpm2mfval  21806
  Copyright terms: Public domain W3C validator