MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-cpmat2mat Structured version   Visualization version   GIF version

Definition df-cpmat2mat 22643
Description: Transformation of a constant polynomial matrix (over a ring) into a matrix over the corresponding ring. Since this function is the inverse function of matToPolyMat, see m2cpminv 22695, it is also called "inverse matrix transformation" in the following. (Contributed by AV, 14-Dec-2019.)
Assertion
Ref Expression
df-cpmat2mat cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Distinct variable group:   𝑚,𝑛,𝑟,𝑥,𝑦

Detailed syntax breakdown of Definition df-cpmat2mat
StepHypRef Expression
1 ccpmat2mat 22640 . 2 class cPolyMatToMat
2 vn . . 3 setvar 𝑛
3 vr . . 3 setvar 𝑟
4 cfn 8879 . . 3 class Fin
5 cvv 3437 . . 3 class V
6 vm . . . 4 setvar 𝑚
72cv 1540 . . . . 5 class 𝑛
83cv 1540 . . . . 5 class 𝑟
9 ccpmat 22638 . . . . 5 class ConstPolyMat
107, 8, 9co 7355 . . . 4 class (𝑛 ConstPolyMat 𝑟)
11 vx . . . . 5 setvar 𝑥
12 vy . . . . 5 setvar 𝑦
13 cc0 11017 . . . . . 6 class 0
1411cv 1540 . . . . . . . 8 class 𝑥
1512cv 1540 . . . . . . . 8 class 𝑦
166cv 1540 . . . . . . . 8 class 𝑚
1714, 15, 16co 7355 . . . . . . 7 class (𝑥𝑚𝑦)
18 cco1 22109 . . . . . . 7 class coe1
1917, 18cfv 6489 . . . . . 6 class (coe1‘(𝑥𝑚𝑦))
2013, 19cfv 6489 . . . . 5 class ((coe1‘(𝑥𝑚𝑦))‘0)
2111, 12, 7, 7, 20cmpo 7357 . . . 4 class (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))
226, 10, 21cmpt 5176 . . 3 class (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))
232, 3, 4, 5, 22cmpo 7357 . 2 class (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
241, 23wceq 1541 1 wff cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Colors of variables: wff setvar class
This definition is referenced by:  cpm2mfval  22684
  Copyright terms: Public domain W3C validator