MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mfval Structured version   Visualization version   GIF version

Theorem cpm2mfval 22242
Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mfval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Distinct variable groups:   𝑚,𝑁,𝑥,𝑦   𝑅,𝑚,𝑥,𝑦   𝑆,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦,𝑚)   𝑉(𝑥,𝑦,𝑚)

Proof of Theorem cpm2mfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . 2 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 df-cpmat2mat 22201 . . . 4 cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))))
4 oveq12 7414 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = (𝑁 ConstPolyMat 𝑅))
5 cpm2mfval.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
64, 5eqtr4di 2790 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = 𝑆)
7 simpl 483 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
8 eqidd 2733 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑚𝑦))‘0))
97, 7, 8mpoeq123dv 7480 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))
106, 9mpteq12dv 5238 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
1110adantl 482 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
12 simpl 483 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
13 elex 3492 . . . 4 (𝑅𝑉𝑅 ∈ V)
1413adantl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
155ovexi 7439 . . . 4 𝑆 ∈ V
16 mptexg 7219 . . . 4 (𝑆 ∈ V → (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V)
1715, 16mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V)
183, 11, 12, 14, 17ovmpod 7556 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 cPolyMatToMat 𝑅) = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
191, 18eqtrid 2784 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  cmpt 5230  cfv 6540  (class class class)co 7405  cmpo 7407  Fincfn 8935  0cc0 11106  coe1cco1 21693   ConstPolyMat ccpmat 22196   cPolyMatToMat ccpmat2mat 22198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-cpmat2mat 22201
This theorem is referenced by:  cpm2mval  22243  cpm2mf  22245  m2cpmfo  22249  cayleyhamiltonALT  22384
  Copyright terms: Public domain W3C validator