MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpm2mfval Structured version   Visualization version   GIF version

Theorem cpm2mfval 22642
Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
cpm2mfval.i 𝐼 = (𝑁 cPolyMatToMat 𝑅)
cpm2mfval.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
Assertion
Ref Expression
cpm2mfval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Distinct variable groups:   𝑚,𝑁,𝑥,𝑦   𝑅,𝑚,𝑥,𝑦   𝑆,𝑚
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐼(𝑥,𝑦,𝑚)   𝑉(𝑥,𝑦,𝑚)

Proof of Theorem cpm2mfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpm2mfval.i . 2 𝐼 = (𝑁 cPolyMatToMat 𝑅)
2 df-cpmat2mat 22601 . . . 4 cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))))
4 oveq12 7398 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = (𝑁 ConstPolyMat 𝑅))
5 cpm2mfval.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
64, 5eqtr4di 2783 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = 𝑆)
7 simpl 482 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
8 eqidd 2731 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑚𝑦))‘0))
97, 7, 8mpoeq123dv 7466 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))
106, 9mpteq12dv 5196 . . . 4 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
1110adantl 481 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
12 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
13 elex 3471 . . . 4 (𝑅𝑉𝑅 ∈ V)
1413adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
155ovexi 7423 . . . 4 𝑆 ∈ V
16 mptexg 7197 . . . 4 (𝑆 ∈ V → (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V)
1715, 16mp1i 13 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V)
183, 11, 12, 14, 17ovmpod 7543 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 cPolyMatToMat 𝑅) = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
191, 18eqtrid 2777 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝐼 = (𝑚𝑆 ↦ (𝑥𝑁, 𝑦𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5190  cfv 6513  (class class class)co 7389  cmpo 7391  Fincfn 8920  0cc0 11074  coe1cco1 22068   ConstPolyMat ccpmat 22596   cPolyMatToMat ccpmat2mat 22598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-cpmat2mat 22601
This theorem is referenced by:  cpm2mval  22643  cpm2mf  22645  m2cpmfo  22649  cayleyhamiltonALT  22784
  Copyright terms: Public domain W3C validator