![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mfval | Structured version Visualization version GIF version |
Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . 2 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | df-cpmat2mat 22191 | . . . 4 ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))) |
4 | oveq12 7412 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = (𝑁 ConstPolyMat 𝑅)) | |
5 | cpm2mfval.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
6 | 4, 5 | eqtr4di 2791 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = 𝑆) |
7 | simpl 484 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) | |
8 | eqidd 2734 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑚𝑦))‘0)) | |
9 | 7, 7, 8 | mpoeq123dv 7478 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) |
10 | 6, 9 | mpteq12dv 5237 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
11 | 10 | adantl 483 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
12 | simpl 484 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) | |
13 | elex 3493 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
14 | 13 | adantl 483 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
15 | 5 | ovexi 7437 | . . . 4 ⊢ 𝑆 ∈ V |
16 | mptexg 7217 | . . . 4 ⊢ (𝑆 ∈ V → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) |
18 | 3, 11, 12, 14, 17 | ovmpod 7554 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
19 | 1, 18 | eqtrid 2785 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ↦ cmpt 5229 ‘cfv 6539 (class class class)co 7403 ∈ cmpo 7405 Fincfn 8934 0cc0 11105 coe1cco1 21683 ConstPolyMat ccpmat 22186 cPolyMatToMat ccpmat2mat 22188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4527 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-ov 7406 df-oprab 7407 df-mpo 7408 df-cpmat2mat 22191 |
This theorem is referenced by: cpm2mval 22233 cpm2mf 22235 m2cpmfo 22239 cayleyhamiltonALT 22374 |
Copyright terms: Public domain | W3C validator |