Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpm2mfval | Structured version Visualization version GIF version |
Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . 2 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | df-cpmat2mat 21765 | . . . 4 ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))) |
4 | oveq12 7264 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = (𝑁 ConstPolyMat 𝑅)) | |
5 | cpm2mfval.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
6 | 4, 5 | eqtr4di 2797 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = 𝑆) |
7 | simpl 482 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) | |
8 | eqidd 2739 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑚𝑦))‘0)) | |
9 | 7, 7, 8 | mpoeq123dv 7328 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) |
10 | 6, 9 | mpteq12dv 5161 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
11 | 10 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
12 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) | |
13 | elex 3440 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
15 | 5 | ovexi 7289 | . . . 4 ⊢ 𝑆 ∈ V |
16 | mptexg 7079 | . . . 4 ⊢ (𝑆 ∈ V → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) |
18 | 3, 11, 12, 14, 17 | ovmpod 7403 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
19 | 1, 18 | eqtrid 2790 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 Fincfn 8691 0cc0 10802 coe1cco1 21259 ConstPolyMat ccpmat 21760 cPolyMatToMat ccpmat2mat 21762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-cpmat2mat 21765 |
This theorem is referenced by: cpm2mval 21807 cpm2mf 21809 m2cpmfo 21813 cayleyhamiltonALT 21948 |
Copyright terms: Public domain | W3C validator |