![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpm2mfval | Structured version Visualization version GIF version |
Description: Value of the inverse matrix transformation. (Contributed by AV, 14-Dec-2019.) |
Ref | Expression |
---|---|
cpm2mfval.i | ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) |
cpm2mfval.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
Ref | Expression |
---|---|
cpm2mfval | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpm2mfval.i | . 2 ⊢ 𝐼 = (𝑁 cPolyMatToMat 𝑅) | |
2 | df-cpmat2mat 22730 | . . . 4 ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))) |
4 | oveq12 7440 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = (𝑁 ConstPolyMat 𝑅)) | |
5 | cpm2mfval.s | . . . . . 6 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
6 | 4, 5 | eqtr4di 2793 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 ConstPolyMat 𝑟) = 𝑆) |
7 | simpl 482 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) | |
8 | eqidd 2736 | . . . . . 6 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((coe1‘(𝑥𝑚𝑦))‘0) = ((coe1‘(𝑥𝑚𝑦))‘0)) | |
9 | 7, 7, 8 | mpoeq123dv 7508 | . . . . 5 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)) = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) |
10 | 6, 9 | mpteq12dv 5239 | . . . 4 ⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
11 | 10 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) ∧ (𝑛 = 𝑁 ∧ 𝑟 = 𝑅)) → (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
12 | simpl 482 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑁 ∈ Fin) | |
13 | elex 3499 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
14 | 13 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑅 ∈ V) |
15 | 5 | ovexi 7465 | . . . 4 ⊢ 𝑆 ∈ V |
16 | mptexg 7241 | . . . 4 ⊢ (𝑆 ∈ V → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))) ∈ V) |
18 | 3, 11, 12, 14, 17 | ovmpod 7585 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑁 cPolyMatToMat 𝑅) = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
19 | 1, 18 | eqtrid 2787 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝐼 = (𝑚 ∈ 𝑆 ↦ (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Fincfn 8984 0cc0 11153 coe1cco1 22195 ConstPolyMat ccpmat 22725 cPolyMatToMat ccpmat2mat 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-cpmat2mat 22730 |
This theorem is referenced by: cpm2mval 22772 cpm2mf 22774 m2cpmfo 22778 cayleyhamiltonALT 22913 |
Copyright terms: Public domain | W3C validator |