| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-cref | Structured version Visualization version GIF version | ||
| Description: Define a statement "every open cover has an 𝐴 refinement" , where 𝐴 is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| df-cref | ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | ccref 33841 | . 2 class CovHasRef𝐴 |
| 3 | vj | . . . . . . . 8 setvar 𝑗 | |
| 4 | 3 | cv 1539 | . . . . . . 7 class 𝑗 |
| 5 | 4 | cuni 4907 | . . . . . 6 class ∪ 𝑗 |
| 6 | vy | . . . . . . . 8 setvar 𝑦 | |
| 7 | 6 | cv 1539 | . . . . . . 7 class 𝑦 |
| 8 | 7 | cuni 4907 | . . . . . 6 class ∪ 𝑦 |
| 9 | 5, 8 | wceq 1540 | . . . . 5 wff ∪ 𝑗 = ∪ 𝑦 |
| 10 | vz | . . . . . . . 8 setvar 𝑧 | |
| 11 | 10 | cv 1539 | . . . . . . 7 class 𝑧 |
| 12 | cref 23510 | . . . . . . 7 class Ref | |
| 13 | 11, 7, 12 | wbr 5143 | . . . . . 6 wff 𝑧Ref𝑦 |
| 14 | 4 | cpw 4600 | . . . . . . 7 class 𝒫 𝑗 |
| 15 | 14, 1 | cin 3950 | . . . . . 6 class (𝒫 𝑗 ∩ 𝐴) |
| 16 | 13, 10, 15 | wrex 3070 | . . . . 5 wff ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 |
| 17 | 9, 16 | wi 4 | . . . 4 wff (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) |
| 18 | 17, 6, 14 | wral 3061 | . . 3 wff ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) |
| 19 | ctop 22899 | . . 3 class Top | |
| 20 | 18, 3, 19 | crab 3436 | . 2 class {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} |
| 21 | 2, 20 | wceq 1540 | 1 wff CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: iscref 33843 crefeq 33844 |
| Copyright terms: Public domain | W3C validator |