| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > crefeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| crefeq | ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 4194 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝑗 ∩ 𝐵)) | |
| 2 | 1 | rexeqdv 3310 | . . . . 5 ⊢ (𝐴 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝐴 = 𝐵 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
| 4 | 3 | ralbidv 3165 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
| 5 | 4 | rabbidv 3427 | . 2 ⊢ (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)}) |
| 6 | df-cref 33801 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
| 7 | df-cref 33801 | . 2 ⊢ CovHasRef𝐵 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)} | |
| 8 | 5, 6, 7 | 3eqtr4g 2794 | 1 ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∀wral 3050 ∃wrex 3059 {crab 3419 ∩ cin 3930 𝒫 cpw 4580 ∪ cuni 4887 class class class wbr 5123 Topctop 22847 Refcref 23456 CovHasRefccref 33800 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-in 3938 df-cref 33801 |
| This theorem is referenced by: ispcmp 33815 |
| Copyright terms: Public domain | W3C validator |