![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > crefeq | Structured version Visualization version GIF version |
Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
crefeq | ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq2 4207 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝑗 ∩ 𝐵)) | |
2 | 1 | rexeqdv 3327 | . . . . 5 ⊢ (𝐴 = 𝐵 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)) |
3 | 2 | imbi2d 341 | . . . 4 ⊢ (𝐴 = 𝐵 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
4 | 3 | ralbidv 3178 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦))) |
5 | 4 | rabbidv 3441 | . 2 ⊢ (𝐴 = 𝐵 → {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)}) |
6 | df-cref 32823 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
7 | df-cref 32823 | . 2 ⊢ CovHasRef𝐵 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐵)𝑧Ref𝑦)} | |
8 | 5, 6, 7 | 3eqtr4g 2798 | 1 ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∀wral 3062 ∃wrex 3071 {crab 3433 ∩ cin 3948 𝒫 cpw 4603 ∪ cuni 4909 class class class wbr 5149 Topctop 22395 Refcref 23006 CovHasRefccref 32822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-in 3956 df-cref 32823 |
This theorem is referenced by: ispcmp 32837 |
Copyright terms: Public domain | W3C validator |