Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscref Structured version   Visualization version   GIF version

Theorem iscref 32482
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.)
Hypothesis
Ref Expression
iscref.x 𝑋 = 𝐽
Assertion
Ref Expression
iscref (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐽,𝑧
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem iscref
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 pweq 4575 . . 3 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽)
2 unieq 4877 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
3 iscref.x . . . . . 6 𝑋 = 𝐽
42, 3eqtr4di 2791 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
54eqeq1d 2735 . . . 4 (𝑗 = 𝐽 → ( 𝑗 = 𝑦𝑋 = 𝑦))
61ineq1d 4172 . . . . 5 (𝑗 = 𝐽 → (𝒫 𝑗𝐴) = (𝒫 𝐽𝐴))
76rexeqdv 3313 . . . 4 (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦))
85, 7imbi12d 345 . . 3 (𝑗 = 𝐽 → (( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦) ↔ (𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
91, 8raleqbidv 3318 . 2 (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
10 df-cref 32481 . 2 CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦)}
119, 10elrab2 3649 1 (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝐽𝐴)𝑧Ref𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070  cin 3910  𝒫 cpw 4561   cuni 4866   class class class wbr 5106  Topctop 22258  Refcref 22869  CovHasRefccref 32480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-in 3918  df-ss 3928  df-pw 4563  df-uni 4867  df-cref 32481
This theorem is referenced by:  creftop  32484  crefi  32485  crefss  32487  cmpcref  32488  cmppcmp  32496  dispcmp  32497  pcmplfin  32498
  Copyright terms: Public domain W3C validator