![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscref | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
iscref.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscref | ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4619 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽) | |
2 | unieq 4923 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | iscref.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2793 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 4 | eqeq1d 2737 | . . . 4 ⊢ (𝑗 = 𝐽 → (∪ 𝑗 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
6 | 1 | ineq1d 4227 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝐽 ∩ 𝐴)) |
7 | 6 | rexeqdv 3325 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
8 | 5, 7 | imbi12d 344 | . . 3 ⊢ (𝑗 = 𝐽 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
9 | 1, 8 | raleqbidv 3344 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
10 | df-cref 33804 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
11 | 9, 10 | elrab2 3698 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 Topctop 22915 Refcref 23526 CovHasRefccref 33803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 df-pw 4607 df-uni 4913 df-cref 33804 |
This theorem is referenced by: creftop 33807 crefi 33808 crefss 33810 cmpcref 33811 cmppcmp 33819 dispcmp 33820 pcmplfin 33821 |
Copyright terms: Public domain | W3C validator |