| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscref | Structured version Visualization version GIF version | ||
| Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| Ref | Expression |
|---|---|
| iscref.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| iscref | ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4564 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽) | |
| 2 | unieq 4870 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
| 3 | iscref.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
| 5 | 4 | eqeq1d 2733 | . . . 4 ⊢ (𝑗 = 𝐽 → (∪ 𝑗 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
| 6 | 1 | ineq1d 4169 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝐽 ∩ 𝐴)) |
| 7 | 6 | rexeqdv 3293 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
| 8 | 5, 7 | imbi12d 344 | . . 3 ⊢ (𝑗 = 𝐽 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
| 9 | 1, 8 | raleqbidv 3312 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
| 10 | df-cref 33851 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
| 11 | 9, 10 | elrab2 3650 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∩ cin 3901 𝒫 cpw 4550 ∪ cuni 4859 class class class wbr 5091 Topctop 22806 Refcref 23415 CovHasRefccref 33850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 df-pw 4552 df-uni 4860 df-cref 33851 |
| This theorem is referenced by: creftop 33854 crefi 33855 crefss 33857 cmpcref 33858 cmppcmp 33866 dispcmp 33867 pcmplfin 33868 |
| Copyright terms: Public domain | W3C validator |