Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscref | Structured version Visualization version GIF version |
Description: The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
Ref | Expression |
---|---|
iscref.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
iscref | ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4549 | . . 3 ⊢ (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝐽) | |
2 | unieq 4850 | . . . . . 6 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽) | |
3 | iscref.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2796 | . . . . 5 ⊢ (𝑗 = 𝐽 → ∪ 𝑗 = 𝑋) |
5 | 4 | eqeq1d 2740 | . . . 4 ⊢ (𝑗 = 𝐽 → (∪ 𝑗 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
6 | 1 | ineq1d 4145 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝒫 𝑗 ∩ 𝐴) = (𝒫 𝐽 ∩ 𝐴)) |
7 | 6 | rexeqdv 3349 | . . . 4 ⊢ (𝑗 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦 ↔ ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦)) |
8 | 5, 7 | imbi12d 345 | . . 3 ⊢ (𝑗 = 𝐽 → ((∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ (𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
9 | 1, 8 | raleqbidv 3336 | . 2 ⊢ (𝑗 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦) ↔ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
10 | df-cref 31793 | . 2 ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | |
11 | 9, 10 | elrab2 3627 | 1 ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∩ cin 3886 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 Topctop 22042 Refcref 22653 CovHasRefccref 31792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 df-cref 31793 |
This theorem is referenced by: creftop 31796 crefi 31797 crefss 31799 cmpcref 31800 cmppcmp 31808 dispcmp 31809 pcmplfin 31810 |
Copyright terms: Public domain | W3C validator |