| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-cring | Structured version Visualization version GIF version | ||
| Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| df-cring | ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccrg 20231 | . 2 class CRing | |
| 2 | vf | . . . . . 6 setvar 𝑓 | |
| 3 | 2 | cv 1539 | . . . . 5 class 𝑓 |
| 4 | cmgp 20137 | . . . . 5 class mulGrp | |
| 5 | 3, 4 | cfv 6561 | . . . 4 class (mulGrp‘𝑓) |
| 6 | ccmn 19798 | . . . 4 class CMnd | |
| 7 | 5, 6 | wcel 2108 | . . 3 wff (mulGrp‘𝑓) ∈ CMnd |
| 8 | crg 20230 | . . 3 class Ring | |
| 9 | 7, 2, 8 | crab 3436 | . 2 class {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
| 10 | 1, 9 | wceq 1540 | 1 wff CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
| Colors of variables: wff setvar class |
| This definition is referenced by: iscrng 20237 |
| Copyright terms: Public domain | W3C validator |