MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrng Structured version   Visualization version   GIF version

Theorem iscrng 18994
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscrng (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6538 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 ringmgp.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2syl6eqr 2849 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2867 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-cring 18990 . 2 CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3621 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1522  wcel 2081  cfv 6225  CMndccmn 18633  mulGrpcmgp 18929  Ringcrg 18987  CRingccrg 18988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rex 3111  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-iota 6189  df-fv 6233  df-cring 18990
This theorem is referenced by:  crngmgp  18995  crngring  18998  iscrng2  19003  crngpropd  19023  iscrngd  19026  prdscrngd  19053  subrgcrng  19229  psrcrng  19881  cntrcrng  30510
  Copyright terms: Public domain W3C validator