Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscrng | Structured version Visualization version GIF version |
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
iscrng | ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6663 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
2 | ringmgp.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
3 | 1, 2 | eqtr4di 2811 | . . 3 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
4 | 3 | eleq1d 2836 | . 2 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd)) |
5 | df-cring 19381 | . 2 ⊢ CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd} | |
6 | 4, 5 | elrab2 3607 | 1 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 CMndccmn 18986 mulGrpcmgp 19320 Ringcrg 19378 CRingccrg 19379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-cring 19381 |
This theorem is referenced by: crngmgp 19386 crngring 19390 iscrng2 19397 crngpropd 19417 iscrngd 19420 prdscrngd 19447 subrgcrng 19620 psrcrng 20754 cntrcrng 30860 |
Copyright terms: Public domain | W3C validator |