| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscrng | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| iscrng | ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 2 | ringmgp.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2784 | . . 3 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
| 4 | 3 | eleq1d 2816 | . 2 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd)) |
| 5 | df-cring 20149 | . 2 ⊢ CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd} | |
| 6 | 4, 5 | elrab2 3645 | 1 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 CMndccmn 19687 mulGrpcmgp 20053 Ringcrg 20146 CRingccrg 20147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 df-cring 20149 |
| This theorem is referenced by: crngmgp 20154 crngring 20158 iscrng2 20165 crngpropd 20202 iscrngd 20205 prdscrngd 20235 subrgcrng 20485 psrcrng 21904 cntrcrng 33042 0ringcring 33211 |
| Copyright terms: Public domain | W3C validator |