MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrng Structured version   Visualization version   GIF version

Theorem iscrng 20238
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscrng (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 ringmgp.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2794 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2825 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-cring 20234 . 2 CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3694 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  cfv 6560  CMndccmn 19799  mulGrpcmgp 20138  Ringcrg 20231  CRingccrg 20232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-cring 20234
This theorem is referenced by:  crngmgp  20239  crngring  20243  iscrng2  20250  crngpropd  20287  iscrngd  20290  prdscrngd  20320  subrgcrng  20576  psrcrng  21993  cntrcrng  33074  0ringcring  33257
  Copyright terms: Public domain W3C validator