MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrng Structured version   Visualization version   GIF version

Theorem iscrng 19790
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g 𝐺 = (mulGrp‘𝑅)
Assertion
Ref Expression
iscrng (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))

Proof of Theorem iscrng
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . 4 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 ringmgp.g . . . 4 𝐺 = (mulGrp‘𝑅)
31, 2eqtr4di 2796 . . 3 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2823 . 2 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd))
5 df-cring 19786 . 2 CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd}
64, 5elrab2 3627 1 (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  CMndccmn 19386  mulGrpcmgp 19720  Ringcrg 19783  CRingccrg 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-cring 19786
This theorem is referenced by:  crngmgp  19791  crngring  19795  iscrng2  19802  crngpropd  19822  iscrngd  19825  prdscrngd  19852  subrgcrng  20028  psrcrng  21182  cntrcrng  31322
  Copyright terms: Public domain W3C validator