| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscrng | Structured version Visualization version GIF version | ||
| Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringmgp.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| iscrng | ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) | |
| 2 | ringmgp.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
| 4 | 3 | eleq1d 2814 | . 2 ⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ CMnd ↔ 𝐺 ∈ CMnd)) |
| 5 | df-cring 20152 | . 2 ⊢ CRing = {𝑟 ∈ Ring ∣ (mulGrp‘𝑟) ∈ CMnd} | |
| 6 | 4, 5 | elrab2 3665 | 1 ⊢ (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 CMndccmn 19717 mulGrpcmgp 20056 Ringcrg 20149 CRingccrg 20150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-cring 20152 |
| This theorem is referenced by: crngmgp 20157 crngring 20161 iscrng2 20168 crngpropd 20205 iscrngd 20208 prdscrngd 20238 subrgcrng 20491 psrcrng 21888 cntrcrng 33017 0ringcring 33210 |
| Copyright terms: Public domain | W3C validator |