Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅)) |
2 | | isring.g |
. . . . . 6
⊢ 𝐺 = (mulGrp‘𝑅) |
3 | 1, 2 | eqtr4di 2797 |
. . . . 5
⊢ (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺) |
4 | 3 | eleq1d 2823 |
. . . 4
⊢ (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ Mnd ↔ 𝐺 ∈ Mnd)) |
5 | | fvexd 6771 |
. . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) ∈ V) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
7 | | isring.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
8 | 6, 7 | eqtr4di 2797 |
. . . . 5
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵) |
9 | | fvexd 6771 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (+g‘𝑟) ∈ V) |
10 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅) |
11 | 10 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (+g‘𝑟) = (+g‘𝑅)) |
12 | | isring.p |
. . . . . . 7
⊢ + =
(+g‘𝑅) |
13 | 11, 12 | eqtr4di 2797 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → (+g‘𝑟) = + ) |
14 | | fvexd 6771 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
(.r‘𝑟)
∈ V) |
15 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) → 𝑟 = 𝑅) |
16 | 15 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
(.r‘𝑟) =
(.r‘𝑅)) |
17 | | isring.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
18 | 16, 17 | eqtr4di 2797 |
. . . . . . 7
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
(.r‘𝑟) =
·
) |
19 | | simpllr 772 |
. . . . . . . 8
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵) |
20 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · ) |
21 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥) |
22 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + ) |
23 | 22 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧)) |
24 | 20, 21, 23 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧))) |
25 | 20 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦)) |
26 | 20 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧)) |
27 | 22, 25, 26 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
28 | 24, 27 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))) |
29 | 22 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦)) |
30 | | eqidd 2739 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧) |
31 | 20, 29, 30 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧)) |
32 | 20 | oveqd 7272 |
. . . . . . . . . . . . 13
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧)) |
33 | 22, 26, 32 | oveq123d 7276 |
. . . . . . . . . . . 12
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
34 | 31, 33 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) |
35 | 28, 34 | anbi12d 630 |
. . . . . . . . . 10
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
36 | 19, 35 | raleqbidv 3327 |
. . . . . . . . 9
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) →
(∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
37 | 19, 36 | raleqbidv 3327 |
. . . . . . . 8
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) →
(∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
38 | 19, 37 | raleqbidv 3327 |
. . . . . . 7
⊢ ((((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) →
(∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
39 | 14, 18, 38 | sbcied2 3758 |
. . . . . 6
⊢ (((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) ∧ 𝑝 = + ) →
([(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
40 | 9, 13, 39 | sbcied2 3758 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑏 = 𝐵) → ([(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
41 | 5, 8, 40 | sbcied2 3758 |
. . . 4
⊢ (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |
42 | 4, 41 | anbi12d 630 |
. . 3
⊢ (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)))) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
43 | | df-ring 19700 |
. . 3
⊢ Ring =
{𝑟 ∈ Grp ∣
((mulGrp‘𝑟) ∈
Mnd ∧ [(Base‘𝑟) / 𝑏][(+g‘𝑟) / 𝑝][(.r‘𝑟) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
44 | 42, 43 | elrab2 3620 |
. 2
⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
45 | | 3anass 1093 |
. 2
⊢ ((𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) ↔ (𝑅 ∈ Grp ∧ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))) |
46 | 44, 45 | bitr4i 277 |
1
⊢ (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))) |