Detailed syntax breakdown of Definition df-csh
Step | Hyp | Ref
| Expression |
1 | | ccsh 14546 |
. 2
class
cyclShift |
2 | | vw |
. . 3
setvar 𝑤 |
3 | | vn |
. . 3
setvar 𝑛 |
4 | | vf |
. . . . . . 7
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . 6
class 𝑓 |
6 | | cc0 10917 |
. . . . . . 7
class
0 |
7 | | vl |
. . . . . . . 8
setvar 𝑙 |
8 | 7 | cv 1538 |
. . . . . . 7
class 𝑙 |
9 | | cfzo 13428 |
. . . . . . 7
class
..^ |
10 | 6, 8, 9 | co 7307 |
. . . . . 6
class
(0..^𝑙) |
11 | 5, 10 | wfn 6453 |
. . . . 5
wff 𝑓 Fn (0..^𝑙) |
12 | | cn0 12279 |
. . . . 5
class
ℕ0 |
13 | 11, 7, 12 | wrex 3071 |
. . . 4
wff
∃𝑙 ∈
ℕ0 𝑓 Fn
(0..^𝑙) |
14 | 13, 4 | cab 2713 |
. . 3
class {𝑓 ∣ ∃𝑙 ∈ ℕ0
𝑓 Fn (0..^𝑙)} |
15 | | cz 12365 |
. . 3
class
ℤ |
16 | 2 | cv 1538 |
. . . . 5
class 𝑤 |
17 | | c0 4262 |
. . . . 5
class
∅ |
18 | 16, 17 | wceq 1539 |
. . . 4
wff 𝑤 = ∅ |
19 | 3 | cv 1538 |
. . . . . . . 8
class 𝑛 |
20 | | chash 14090 |
. . . . . . . . 9
class
♯ |
21 | 16, 20 | cfv 6458 |
. . . . . . . 8
class
(♯‘𝑤) |
22 | | cmo 13635 |
. . . . . . . 8
class
mod |
23 | 19, 21, 22 | co 7307 |
. . . . . . 7
class (𝑛 mod (♯‘𝑤)) |
24 | 23, 21 | cop 4571 |
. . . . . 6
class
〈(𝑛 mod
(♯‘𝑤)),
(♯‘𝑤)〉 |
25 | | csubstr 14398 |
. . . . . 6
class
substr |
26 | 16, 24, 25 | co 7307 |
. . . . 5
class (𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) |
27 | | cpfx 14428 |
. . . . . 6
class
prefix |
28 | 16, 23, 27 | co 7307 |
. . . . 5
class (𝑤 prefix (𝑛 mod (♯‘𝑤))) |
29 | | cconcat 14318 |
. . . . 5
class
++ |
30 | 26, 28, 29 | co 7307 |
. . . 4
class ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) |
31 | 18, 17, 30 | cif 4465 |
. . 3
class if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) |
32 | 2, 3, 14, 15, 31 | cmpo 7309 |
. 2
class (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) |
33 | 1, 32 | wceq 1539 |
1
wff cyclShift
= (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0
𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) |