MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-csh Structured version   Visualization version   GIF version

Definition df-csh 13913
Description: Perform a cyclical shift for an arbitrary class. Meaningful only for words 𝑤 ∈ Word 𝑆 or at least functions over half-open ranges of nonnegative integers. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by Mario Carneiro/Alexander van der Vekens/ Gerard Lang, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.)
Assertion
Ref Expression
df-csh cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
Distinct variable group:   𝑓,𝑙,𝑛,𝑤

Detailed syntax breakdown of Definition df-csh
StepHypRef Expression
1 ccsh 13911 . 2 class cyclShift
2 vw . . 3 setvar 𝑤
3 vn . . 3 setvar 𝑛
4 vf . . . . . . 7 setvar 𝑓
54cv 1655 . . . . . 6 class 𝑓
6 cc0 10259 . . . . . . 7 class 0
7 vl . . . . . . . 8 setvar 𝑙
87cv 1655 . . . . . . 7 class 𝑙
9 cfzo 12767 . . . . . . 7 class ..^
106, 8, 9co 6910 . . . . . 6 class (0..^𝑙)
115, 10wfn 6122 . . . . 5 wff 𝑓 Fn (0..^𝑙)
12 cn0 11625 . . . . 5 class 0
1311, 7, 12wrex 3118 . . . 4 wff 𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)
1413, 4cab 2811 . . 3 class {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}
15 cz 11711 . . 3 class
162cv 1655 . . . . 5 class 𝑤
17 c0 4146 . . . . 5 class
1816, 17wceq 1656 . . . 4 wff 𝑤 = ∅
193cv 1655 . . . . . . . 8 class 𝑛
20 chash 13417 . . . . . . . . 9 class
2116, 20cfv 6127 . . . . . . . 8 class (♯‘𝑤)
22 cmo 12970 . . . . . . . 8 class mod
2319, 21, 22co 6910 . . . . . . 7 class (𝑛 mod (♯‘𝑤))
2423, 21cop 4405 . . . . . 6 class ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩
25 csubstr 13707 . . . . . 6 class substr
2616, 24, 25co 6910 . . . . 5 class (𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩)
27 cpfx 13756 . . . . . 6 class prefix
2816, 23, 27co 6910 . . . . 5 class (𝑤 prefix (𝑛 mod (♯‘𝑤)))
29 cconcat 13637 . . . . 5 class ++
3026, 28, 29co 6910 . . . 4 class ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))
3118, 17, 30cif 4308 . . 3 class if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))
322, 3, 14, 15, 31cmpt2 6912 . 2 class (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
331, 32wceq 1656 1 wff cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
Colors of variables: wff setvar class
This definition is referenced by:  cshfn  13915  cshnz  13918  0csh0  13920
  Copyright terms: Public domain W3C validator