Home | Metamath
Proof Explorer Theorem List (p. 148 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dfrtrcl2 14701 | The two definitions t* and t*rec of the reflexive, transitive closure coincide if 𝑅 is indeed a relation. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → (t*‘𝑅) = (t*rec‘𝑅)) | ||
If we have a statement that holds for some element, and a relation between elements that implies if it holds for the first element then it must hold for the second element, the principle of transitive induction shows the statement holds for any element related to the first by the (reflexive-)transitive closure of the relation. | ||
Theorem | relexpindlem 14702* | Principle of transitive induction, finite and non-class version. The first three hypotheses give various existences, the next three give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Proof shortened by Peter Mazsa, 2-Oct-2022.) (Revised by AV, 13-Jul-2024.) |
⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) | ||
Theorem | relexpind 14703* | Principle of transitive induction, finite version. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction hypothesis. (Contributed by Drahflow, 12-Nov-2015.) (Revised by RP, 30-May-2020.) (Revised by AV, 13-Jul-2024.) |
⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑋 → 𝜏))) | ||
Theorem | rtrclind 14704* | Principle of transitive induction. The first three hypotheses give various existences, the next four give necessary substitutions and the last two are the basis and the induction step. (Contributed by Drahflow, 12-Nov-2015.) (Revised by AV, 13-Jul-2024.) |
⊢ (𝜂 → Rel 𝑅) & ⊢ (𝜂 → 𝑆 ∈ 𝑉) & ⊢ (𝜂 → 𝑋 ∈ 𝑊) & ⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) & ⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) & ⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜏)) & ⊢ (𝜂 → 𝜒) & ⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) ⇒ ⊢ (𝜂 → (𝑆(t*‘𝑅)𝑋 → 𝜏)) | ||
Syntax | cshi 14705 | Extend class notation with function shifter. |
class shift | ||
Definition | df-shft 14706* | Define a function shifter. This operation offsets the value argument of a function (ordinarily on a subset of ℂ) and produces a new function on ℂ. See shftval 14713 for its value. (Contributed by NM, 20-Jul-2005.) |
⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) | ||
Theorem | shftlem 14707* | Two ways to write a shifted set (𝐵 + 𝐴). (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ⊆ ℂ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵} = {𝑥 ∣ ∃𝑦 ∈ 𝐵 𝑥 = (𝑦 + 𝐴)}) | ||
Theorem | shftuz 14708* | A shift of the upper integers. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ (ℤ≥‘𝐵)} = (ℤ≥‘(𝐵 + 𝐴))) | ||
Theorem | shftfval 14709* | The value of the sequence shifter operation is a function on ℂ. 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ (𝑥 − 𝐴)𝐹𝑦)}) | ||
Theorem | shftdm 14710* | Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ dom 𝐹}) | ||
Theorem | shftfib 14711 | Value of a fiber of the relation 𝐹. (Contributed by Mario Carneiro, 4-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) “ {𝐵}) = (𝐹 “ {(𝐵 − 𝐴)})) | ||
Theorem | shftfn 14712* | Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹 Fn 𝐵 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}) | ||
Theorem | shftval 14713 | Value of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 4-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
Theorem | shftval2 14714 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘(𝐴 + 𝐶)) = (𝐹‘(𝐵 + 𝐶))) | ||
Theorem | shftval3 14715 | Value of a sequence shifted by 𝐴 − 𝐵. (Contributed by NM, 20-Jul-2005.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift (𝐴 − 𝐵))‘𝐴) = (𝐹‘𝐵)) | ||
Theorem | shftval4 14716 | Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵))) | ||
Theorem | shftval5 14717 | Value of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘(𝐵 + 𝐴)) = (𝐹‘𝐵)) | ||
Theorem | shftf 14718* | Functionality of a shifted sequence. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐴 ∈ ℂ) → (𝐹 shift 𝐴):{𝑥 ∈ ℂ ∣ (𝑥 − 𝐴) ∈ 𝐵}⟶𝐶) | ||
Theorem | 2shfti 14719 | Composite shift operations. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴) shift 𝐵) = (𝐹 shift (𝐴 + 𝐵))) | ||
Theorem | shftidt2 14720 | Identity law for the shift operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐹 shift 0) = (𝐹 ↾ ℂ) | ||
Theorem | shftidt 14721 | Identity law for the shift operation. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ (𝐴 ∈ ℂ → ((𝐹 shift 0)‘𝐴) = (𝐹‘𝐴)) | ||
Theorem | shftcan1 14722 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift 𝐴) shift -𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
Theorem | shftcan2 14723 | Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐹 shift -𝐴) shift 𝐴)‘𝐵) = (𝐹‘𝐵)) | ||
Theorem | seqshft 14724 | Shifting the index set of a sequence. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-Feb-2014.) |
⊢ 𝐹 ∈ V ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → seq𝑀( + , (𝐹 shift 𝑁)) = (seq(𝑀 − 𝑁)( + , 𝐹) shift 𝑁)) | ||
Syntax | csgn 14725 | Extend class notation to include the Signum function. |
class sgn | ||
Definition | df-sgn 14726 | Signum function. We do not call it "sign", which is homophonic with "sine" (df-sin 15707). Defined as "sgn" in ISO 80000-2:2009(E) operation 2-9.13. It is named "sign" (with the same definition) in the "NIST Digital Library of Mathematical Functions" , front introduction, "Common Notations and Definitions" section at http://dlmf.nist.gov/front/introduction#Sx4 15707. We define this over ℝ* (df-xr 10944) instead of ℝ so that it can accept +∞ and -∞. Note that df-psgn 19014 defines the sign of a permutation, which is different. Value shown in sgnval 14727. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) | ||
Theorem | sgnval 14727 | Value of the signum function. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (𝐴 ∈ ℝ* → (sgn‘𝐴) = if(𝐴 = 0, 0, if(𝐴 < 0, -1, 1))) | ||
Theorem | sgn0 14728 | The signum of 0 is 0. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ (sgn‘0) = 0 | ||
Theorem | sgnp 14729 | The signum of a positive extended real is 1. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | ||
Theorem | sgnrrp 14730 | The signum of a positive real is 1. (Contributed by David A. Wheeler, 18-May-2015.) |
⊢ (𝐴 ∈ ℝ+ → (sgn‘𝐴) = 1) | ||
Theorem | sgn1 14731 | The signum of 1 is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
⊢ (sgn‘1) = 1 | ||
Theorem | sgnpnf 14732 | The signum of +∞ is 1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
⊢ (sgn‘+∞) = 1 | ||
Theorem | sgnn 14733 | The signum of a negative extended real is -1. (Contributed by David A. Wheeler, 15-May-2015.) |
⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | ||
Theorem | sgnmnf 14734 | The signum of -∞ is -1. (Contributed by David A. Wheeler, 26-Jun-2016.) |
⊢ (sgn‘-∞) = -1 | ||
Syntax | ccj 14735 | Extend class notation to include complex conjugate function. |
class ∗ | ||
Syntax | cre 14736 | Extend class notation to include real part of a complex number. |
class ℜ | ||
Syntax | cim 14737 | Extend class notation to include imaginary part of a complex number. |
class ℑ | ||
Definition | df-cj 14738* | Define the complex conjugate function. See cjcli 14808 for its closure and cjval 14741 for its value. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | ||
Definition | df-re 14739 | Define a function whose value is the real part of a complex number. See reval 14745 for its value, recli 14806 for its closure, and replim 14755 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) | ||
Definition | df-im 14740 | Define a function whose value is the imaginary part of a complex number. See imval 14746 for its value, imcli 14807 for its closure, and replim 14755 for its use in decomposing a complex number. (Contributed by NM, 9-May-1999.) |
⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) | ||
Theorem | cjval 14741* | The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = (℩𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) | ||
Theorem | cjth 14742 | The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → ((𝐴 + (∗‘𝐴)) ∈ ℝ ∧ (i · (𝐴 − (∗‘𝐴))) ∈ ℝ)) | ||
Theorem | cjf 14743 | Domain and codomain of the conjugate function. (Contributed by Mario Carneiro, 6-Nov-2013.) |
⊢ ∗:ℂ⟶ℂ | ||
Theorem | cjcl 14744 | The conjugate of a complex number is a complex number (closure law). (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | ||
Theorem | reval 14745 | The value of the real part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = ((𝐴 + (∗‘𝐴)) / 2)) | ||
Theorem | imval 14746 | The value of the imaginary part of a complex number. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) | ||
Theorem | imre 14747 | The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | ||
Theorem | reim 14748 | The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) | ||
Theorem | recl 14749 | The real part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | ||
Theorem | imcl 14750 | The imaginary part of a complex number is real. (Contributed by NM, 9-May-1999.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | ||
Theorem | ref 14751 | Domain and codomain of the real part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ ℜ:ℂ⟶ℝ | ||
Theorem | imf 14752 | Domain and codomain of the imaginary part function. (Contributed by Paul Chapman, 22-Oct-2007.) (Revised by Mario Carneiro, 6-Nov-2013.) |
⊢ ℑ:ℂ⟶ℝ | ||
Theorem | crre 14753 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | ||
Theorem | crim 14754 | The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | ||
Theorem | replim 14755 | Reconstruct a complex number from its real and imaginary parts. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | ||
Theorem | remim 14756 | Value of the conjugate of a complex number. The value is the real part minus i times the imaginary part. Definition 10-3.2 of [Gleason] p. 132. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴)))) | ||
Theorem | reim0 14757 | The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | ||
Theorem | reim0b 14758 | A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) | ||
Theorem | rereb 14759 | A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) | ||
Theorem | mulre 14760 | A product with a nonzero real multiplier is real iff the multiplicand is real. (Contributed by NM, 21-Aug-2008.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℝ ↔ (𝐵 · 𝐴) ∈ ℝ)) | ||
Theorem | rere 14761 | A real number equals its real part. One direction of Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ (𝐴 ∈ ℝ → (ℜ‘𝐴) = 𝐴) | ||
Theorem | cjreb 14762 | A number is real iff it equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (∗‘𝐴) = 𝐴)) | ||
Theorem | recj 14763 | Real part of a complex conjugate. (Contributed by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘(∗‘𝐴)) = (ℜ‘𝐴)) | ||
Theorem | reneg 14764 | Real part of negative. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴)) | ||
Theorem | readd 14765 | Real part distributes over addition. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 + 𝐵)) = ((ℜ‘𝐴) + (ℜ‘𝐵))) | ||
Theorem | resub 14766 | Real part distributes over subtraction. (Contributed by NM, 17-Mar-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 − 𝐵)) = ((ℜ‘𝐴) − (ℜ‘𝐵))) | ||
Theorem | remullem 14767 | Lemma for remul 14768, immul 14775, and cjmul 14781. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))) | ||
Theorem | remul 14768 | Real part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | remul2 14769 | Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (𝐴 · (ℜ‘𝐵))) | ||
Theorem | rediv 14770 | Real part of a division. Related to remul2 14769. (Contributed by David A. Wheeler, 10-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℜ‘(𝐴 / 𝐵)) = ((ℜ‘𝐴) / 𝐵)) | ||
Theorem | imcj 14771 | Imaginary part of a complex conjugate. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘(∗‘𝐴)) = -(ℑ‘𝐴)) | ||
Theorem | imneg 14772 | The imaginary part of a negative number. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘-𝐴) = -(ℑ‘𝐴)) | ||
Theorem | imadd 14773 | Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) | ||
Theorem | imsub 14774 | Imaginary part distributes over subtraction. (Contributed by NM, 18-Mar-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) | ||
Theorem | immul 14775 | Imaginary part of a product. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) | ||
Theorem | immul2 14776 | Imaginary part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (𝐴 · (ℑ‘𝐵))) | ||
Theorem | imdiv 14777 | Imaginary part of a division. Related to immul2 14776. (Contributed by Mario Carneiro, 20-Jun-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (ℑ‘(𝐴 / 𝐵)) = ((ℑ‘𝐴) / 𝐵)) | ||
Theorem | cjre 14778 | A real number equals its complex conjugate. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 8-Oct-1999.) |
⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | ||
Theorem | cjcj 14779 | The conjugate of the conjugate is the original complex number. Proposition 10-3.4(e) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | ||
Theorem | cjadd 14780 | Complex conjugate distributes over addition. Proposition 10-3.4(a) of [Gleason] p. 133. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 + 𝐵)) = ((∗‘𝐴) + (∗‘𝐵))) | ||
Theorem | cjmul 14781 | Complex conjugate distributes over multiplication. Proposition 10-3.4(c) of [Gleason] p. 133. (Contributed by NM, 29-Jul-1999.) (Proof shortened by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))) | ||
Theorem | ipcnval 14782 | Standard inner product on complex numbers. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · (∗‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((ℑ‘𝐴) · (ℑ‘𝐵)))) | ||
Theorem | cjmulrcl 14783 | A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) | ||
Theorem | cjmulval 14784 | A complex number times its conjugate. (Contributed by NM, 1-Feb-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) | ||
Theorem | cjmulge0 14785 | A complex number times its conjugate is nonnegative. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → 0 ≤ (𝐴 · (∗‘𝐴))) | ||
Theorem | cjneg 14786 | Complex conjugate of negative. (Contributed by NM, 27-Feb-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (∗‘-𝐴) = -(∗‘𝐴)) | ||
Theorem | addcj 14787 | A number plus its conjugate is twice its real part. Compare Proposition 10-3.4(h) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + (∗‘𝐴)) = (2 · (ℜ‘𝐴))) | ||
Theorem | cjsub 14788 | Complex conjugate distributes over subtraction. (Contributed by NM, 28-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 − 𝐵)) = ((∗‘𝐴) − (∗‘𝐵))) | ||
Theorem | cjexp 14789 | Complex conjugate of positive integer exponentiation. (Contributed by NM, 7-Jun-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (∗‘(𝐴↑𝑁)) = ((∗‘𝐴)↑𝑁)) | ||
Theorem | imval2 14790 | The imaginary part of a number in terms of complex conjugate. (Contributed by NM, 30-Apr-2005.) |
⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = ((𝐴 − (∗‘𝐴)) / (2 · i))) | ||
Theorem | re0 14791 | The real part of zero. (Contributed by NM, 27-Jul-1999.) |
⊢ (ℜ‘0) = 0 | ||
Theorem | im0 14792 | The imaginary part of zero. (Contributed by NM, 27-Jul-1999.) |
⊢ (ℑ‘0) = 0 | ||
Theorem | re1 14793 | The real part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
⊢ (ℜ‘1) = 1 | ||
Theorem | im1 14794 | The imaginary part of one. (Contributed by Scott Fenton, 9-Jun-2006.) |
⊢ (ℑ‘1) = 0 | ||
Theorem | rei 14795 | The real part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
⊢ (ℜ‘i) = 0 | ||
Theorem | imi 14796 | The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
⊢ (ℑ‘i) = 1 | ||
Theorem | cj0 14797 | The conjugate of zero. (Contributed by NM, 27-Jul-1999.) |
⊢ (∗‘0) = 0 | ||
Theorem | cji 14798 | The complex conjugate of the imaginary unit. (Contributed by NM, 26-Mar-2005.) |
⊢ (∗‘i) = -i | ||
Theorem | cjreim 14799 | The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) | ||
Theorem | cjreim2 14800 | The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 − (i · 𝐵))) = (𝐴 + (i · 𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |