| Metamath
Proof Explorer Theorem List (p. 148 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | swrdccatin2 14701 | The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018.) (Revised by Alexander van der Vekens, 27-May-2018.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) | ||
| Theorem | pfxccatin12lem2c 14702 | Lemma for pfxccatin12lem2 14703 and pfxccatin12lem3 14704. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) | ||
| Theorem | pfxccatin12lem2 14703 | Lemma 2 for pfxccatin12 14705. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐵 prefix (𝑁 − 𝐿))‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))))) | ||
| Theorem | pfxccatin12lem3 14704 | Lemma 3 for pfxccatin12 14705. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐴 substr 〈𝑀, 𝐿〉)‘𝐾))) | ||
| Theorem | pfxccatin12 14705 | The subword of a concatenation of two words within both of the concatenated words. (Contributed by Alexander van der Vekens, 5-Apr-2018.) (Revised by AV, 9-May-2020.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))) | ||
| Theorem | pfxccat3 14706 | The subword of a concatenation is either a subword of the first concatenated word or a subword of the second concatenated word or a concatenation of a suffix of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by AV, 10-May-2020.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿))))))) | ||
| Theorem | swrdccat 14707 | The subword of a concatenation of two words as concatenation of subwords of the two concatenated words. (Contributed by Alexander van der Vekens, 29-May-2018.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, if(𝑁 ≤ 𝐿, 𝑁, 𝐿)〉) ++ (𝐵 substr 〈if(0 ≤ (𝑀 − 𝐿), (𝑀 − 𝐿), 0), (𝑁 − 𝐿)〉)))) | ||
| Theorem | pfxccatpfx1 14708 | A prefix of a concatenation being a prefix of the first concatenated word. (Contributed by AV, 10-May-2020.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁)) | ||
| Theorem | pfxccatpfx2 14709 | A prefix of a concatenation of two words being the first word concatenated with a prefix of the second word. (Contributed by AV, 10-May-2020.) |
| ⊢ 𝐿 = (♯‘𝐴) & ⊢ 𝑀 = (♯‘𝐵) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))) | ||
| Theorem | pfxccat3a 14710 | A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.) |
| ⊢ 𝐿 = (♯‘𝐴) & ⊢ 𝑀 = (♯‘𝐵) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁 ≤ 𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁 − 𝐿)))))) | ||
| Theorem | swrdccat3blem 14711 | Lemma for swrdccat3b 14712. (Contributed by AV, 30-May-2018.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (♯‘𝐵)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ 𝐵)) = (𝐴 substr 〈𝑀, (𝐿 + (♯‘𝐵))〉)) | ||
| Theorem | swrdccat3b 14712 | A suffix of a concatenation is either a suffix of the second concatenated word or a concatenation of a suffix of the first word with the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by Alexander van der Vekens, 30-May-2018.) (Proof shortened by AV, 14-Oct-2022.) |
| ⊢ 𝐿 = (♯‘𝐴) ⇒ ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ++ 𝐵) substr 〈𝑀, (𝐿 + (♯‘𝐵))〉) = if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (♯‘𝐵)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ 𝐵)))) | ||
| Theorem | pfxccatid 14713 | A prefix of a concatenation of length of the first concatenated word is the first word itself. (Contributed by Alexander van der Vekens, 20-Sep-2018.) (Revised by AV, 10-May-2020.) |
| ⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝑁 = (♯‘𝐴)) → ((𝐴 ++ 𝐵) prefix 𝑁) = 𝐴) | ||
| Theorem | ccats1pfxeqbi 14714 | A word is a prefix of a word with length greater by 1 than the first word iff the second word is the first word concatenated with the last symbol of the second word. (Contributed by AV, 24-Oct-2018.) (Revised by AV, 10-May-2020.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ∧ (♯‘𝑈) = ((♯‘𝑊) + 1)) → (𝑊 = (𝑈 prefix (♯‘𝑊)) ↔ 𝑈 = (𝑊 ++ 〈“(lastS‘𝑈)”〉))) | ||
| Theorem | swrdccatin1d 14715 | The subword of a concatenation of two words within the first of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
| ⊢ (𝜑 → (♯‘𝐴) = 𝐿) & ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...𝐿)) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉)) | ||
| Theorem | swrdccatin2d 14716 | The subword of a concatenation of two words within the second of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by Mario Carneiro/AV, 21-Oct-2018.) |
| ⊢ (𝜑 → (♯‘𝐴) = 𝐿) & ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) & ⊢ (𝜑 → 𝑀 ∈ (𝐿...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) | ||
| Theorem | pfxccatin12d 14717 | The subword of a concatenation of two words within both of the concatenated words. (Contributed by AV, 31-May-2018.) (Revised by AV, 10-May-2020.) |
| ⊢ (𝜑 → (♯‘𝐴) = 𝐿) & ⊢ (𝜑 → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) & ⊢ (𝜑 → 𝑀 ∈ (0...𝐿)) & ⊢ (𝜑 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 prefix (𝑁 − 𝐿)))) | ||
| Theorem | reuccatpfxs1lem 14718* | Lemma for reuccatpfxs1 14719. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 9-May-2020.) |
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ 𝑋) ∧ ∀𝑠 ∈ 𝑉 ((𝑊 ++ 〈“𝑠”〉) ∈ 𝑋 → 𝑆 = 𝑠) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑈 prefix (♯‘𝑊)) → 𝑈 = (𝑊 ++ 〈“𝑆”〉))) | ||
| Theorem | reuccatpfxs1 14719* | There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.) |
| ⊢ Ⅎ𝑣𝑋 ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))) | ||
| Theorem | reuccatpfxs1v 14720* | There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 10-May-2022.) (Proof shortened by AV, 13-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))) | ||
| Syntax | csplice 14721 | Syntax for the word splicing operator. |
| class splice | ||
| Definition | df-splice 14722* | Define an operation which replaces portions of words. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 14-Oct-2022.) |
| ⊢ splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st ‘𝑏))) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd ‘(1st ‘𝑏)), (♯‘𝑠)〉))) | ||
| Theorem | splval 14723 | Value of the substring replacement operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by AV, 11-May-2020.) (Revised by AV, 15-Oct-2022.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ 𝑊 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) | ||
| Theorem | splcl 14724 | Closure of the substring replacement operator. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) ∈ Word 𝐴) | ||
| Theorem | splid 14725 | Splicing a subword for the same subword makes no difference. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof shortened by AV, 14-Oct-2022.) |
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 splice 〈𝑋, 𝑌, (𝑆 substr 〈𝑋, 𝑌〉)〉) = 𝑆) | ||
| Theorem | spllen 14726 | The length of a splice. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) ⇒ ⊢ (𝜑 → (♯‘(𝑆 splice 〈𝐹, 𝑇, 𝑅〉)) = ((♯‘𝑆) + ((♯‘𝑅) − (𝑇 − 𝐹)))) | ||
| Theorem | splfv1 14727 | Symbols to the left of a splice are unaffected. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ (0..^𝐹)) ⇒ ⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘𝑋) = (𝑆‘𝑋)) | ||
| Theorem | splfv2a 14728 | Symbols within the replacement region of a splice, expressed using the coordinates of the replacement region. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ (0..^(♯‘𝑅))) ⇒ ⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘(𝐹 + 𝑋)) = (𝑅‘𝑋)) | ||
| Theorem | splval2 14729 | Value of a splice, assuming the input word 𝑆 has already been decomposed into its pieces. (Contributed by Mario Carneiro, 1-Oct-2015.) (Proof shortened by AV, 15-Oct-2022.) |
| ⊢ (𝜑 → 𝐴 ∈ Word 𝑋) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑋) & ⊢ (𝜑 → 𝐶 ∈ Word 𝑋) & ⊢ (𝜑 → 𝑅 ∈ Word 𝑋) & ⊢ (𝜑 → 𝑆 = ((𝐴 ++ 𝐵) ++ 𝐶)) & ⊢ (𝜑 → 𝐹 = (♯‘𝐴)) & ⊢ (𝜑 → 𝑇 = (𝐹 + (♯‘𝐵))) ⇒ ⊢ (𝜑 → (𝑆 splice 〈𝐹, 𝑇, 𝑅〉) = ((𝐴 ++ 𝑅) ++ 𝐶)) | ||
| Syntax | creverse 14730 | Syntax for the word reverse operator. |
| class reverse | ||
| Definition | df-reverse 14731* | Define an operation which reverses the order of symbols in a word. This operation is also known as "word reversal" and "word mirroring". (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ reverse = (𝑠 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑠)) ↦ (𝑠‘(((♯‘𝑠) − 1) − 𝑥)))) | ||
| Theorem | revval 14732* | Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ (𝑊 ∈ 𝑉 → (reverse‘𝑊) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))) | ||
| Theorem | revcl 14733 | The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴) | ||
| Theorem | revlen 14734 | The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊)) | ||
| Theorem | revfv 14735 | Reverse of a word at a point. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑋) = (𝑊‘(((♯‘𝑊) − 1) − 𝑋))) | ||
| Theorem | rev0 14736 | The empty word is its own reverse. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ (reverse‘∅) = ∅ | ||
| Theorem | revs1 14737 | Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
| ⊢ (reverse‘〈“𝑆”〉) = 〈“𝑆”〉 | ||
| Theorem | revccat 14738 | Antiautomorphic property of the reversal operation. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
| ⊢ ((𝑆 ∈ Word 𝐴 ∧ 𝑇 ∈ Word 𝐴) → (reverse‘(𝑆 ++ 𝑇)) = ((reverse‘𝑇) ++ (reverse‘𝑆))) | ||
| Theorem | revrev 14739 | Reversal is an involution on words. (Contributed by Mario Carneiro, 1-Oct-2015.) |
| ⊢ (𝑊 ∈ Word 𝐴 → (reverse‘(reverse‘𝑊)) = 𝑊) | ||
| Syntax | creps 14740 | Extend class notation with words consisting of one repeated symbol. |
| class repeatS | ||
| Definition | df-reps 14741* | Definition to construct a word consisting of one repeated symbol, often called "repeated symbol word" for short in the following. (Contributed by Alexander van der Vekens, 4-Nov-2018.) |
| ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) | ||
| Theorem | reps 14742* | Construct a function mapping a half-open range of nonnegative integers to a constant. (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = (𝑥 ∈ (0..^𝑁) ↦ 𝑆)) | ||
| Theorem | repsundef 14743 | A function mapping a half-open range of nonnegative integers with an upper bound not being a nonnegative integer to a constant is the empty set (in the meaning of "undefined"). (Contributed by AV, 5-Nov-2018.) |
| ⊢ (𝑁 ∉ ℕ0 → (𝑆 repeatS 𝑁) = ∅) | ||
| Theorem | repsconst 14744 | Construct a function mapping a half-open range of nonnegative integers to a constant, see also fconstmpt 5703. (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆})) | ||
| Theorem | repsf 14745 | The constructed function mapping a half-open range of nonnegative integers to a constant is a function. (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁):(0..^𝑁)⟶𝑉) | ||
| Theorem | repswsymb 14746 | The symbols of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ (0..^𝑁)) → ((𝑆 repeatS 𝑁)‘𝐼) = 𝑆) | ||
| Theorem | repsw 14747 | A function mapping a half-open range of nonnegative integers to a constant is a word consisting of one symbol repeated several times ("repeated symbol word"). (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) ∈ Word 𝑉) | ||
| Theorem | repswlen 14748 | The length of a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (♯‘(𝑆 repeatS 𝑁)) = 𝑁) | ||
| Theorem | repsw0 14749 | The "repeated symbol word" of length 0. (Contributed by AV, 4-Nov-2018.) |
| ⊢ (𝑆 ∈ 𝑉 → (𝑆 repeatS 0) = ∅) | ||
| Theorem | repsdf2 14750* | Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊‘𝑖) = 𝑆))) | ||
| Theorem | repswsymball 14751* | All the symbols of a "repeated symbol word" are the same. (Contributed by AV, 10-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ 𝑉) → (𝑊 = (𝑆 repeatS (♯‘𝑊)) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = 𝑆)) | ||
| Theorem | repswsymballbi 14752* | A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ((𝑊‘0) repeatS (♯‘𝑊)) ↔ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0))) | ||
| Theorem | repswfsts 14753 | The first symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → ((𝑆 repeatS 𝑁)‘0) = 𝑆) | ||
| Theorem | repswlsw 14754 | The last symbol of a nonempty "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (lastS‘(𝑆 repeatS 𝑁)) = 𝑆) | ||
| Theorem | repsw1 14755 | The "repeated symbol word" of length 1. (Contributed by AV, 4-Nov-2018.) |
| ⊢ (𝑆 ∈ 𝑉 → (𝑆 repeatS 1) = 〈“𝑆”〉) | ||
| Theorem | repswswrd 14756 | A subword of a "repeated symbol word" is again a "repeated symbol word". The assumption 𝑁 ≤ 𝐿 is required, because otherwise (𝐿 < 𝑁): ((𝑆 repeatS 𝐿) substr 〈𝑀, 𝑁〉) = ∅, but for M < N (𝑆 repeatS (𝑁 − 𝑀))) ≠ ∅! The proof is relatively long because the border cases (𝑀 = 𝑁, ¬ (𝑀..^𝑁) ⊆ (0..^𝐿) must have been considered. (Contributed by AV, 6-Nov-2018.) |
| ⊢ (((𝑆 ∈ 𝑉 ∧ 𝐿 ∈ ℕ0) ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → ((𝑆 repeatS 𝐿) substr 〈𝑀, 𝑁〉) = (𝑆 repeatS (𝑁 − 𝑀))) | ||
| Theorem | repswpfx 14757 | A prefix of a repeated symbol word is a repeated symbol word. (Contributed by AV, 11-May-2020.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ (0...𝑁)) → ((𝑆 repeatS 𝑁) prefix 𝐿) = (𝑆 repeatS 𝐿)) | ||
| Theorem | repswccat 14758 | The concatenation of two "repeated symbol words" with the same symbol is again a "repeated symbol word". (Contributed by AV, 4-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0) → ((𝑆 repeatS 𝑁) ++ (𝑆 repeatS 𝑀)) = (𝑆 repeatS (𝑁 + 𝑀))) | ||
| Theorem | repswrevw 14759 | The reverse of a "repeated symbol word". (Contributed by AV, 6-Nov-2018.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (reverse‘(𝑆 repeatS 𝑁)) = (𝑆 repeatS 𝑁)) | ||
A word/string can be regarded as "necklace" by connecting the two ends of the word/string together (see Wikipedia "Necklace (combinatorics)", https://en.wikipedia.org/wiki/Necklace_(combinatorics)). Two strings are regarded as the same necklace if one string can be rotated/circularly shifted/cyclically shifted to obtain the second string. To cope with words in the sense of necklaces, the rotation/cyclic shift cyclShift is defined as the basic operation, see df-csh 14761. The main theorems in this section are about counting the number of different necklaces resulting from cyclically shifting a given word, see cshwrepswhash1 17080 for words consisting of identical symbols and cshwshash 17082 for words having lengths which are prime numbers. | ||
| Syntax | ccsh 14760 | Extend class notation with Cyclical Shifts. |
| class cyclShift | ||
| Definition | df-csh 14761* | Perform a cyclical shift for an arbitrary class. Meaningful only for words 𝑤 ∈ Word 𝑆 or at least functions over half-open ranges of nonnegative integers. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by Mario Carneiro/Alexander van der Vekens/ Gerard Lang, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
| ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | ||
| Theorem | cshfn 14762* | Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
| ⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) | ||
| Theorem | cshword 14763 | Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by AV, 12-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) | ||
| Theorem | cshnz 14764 | A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) |
| ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) | ||
| Theorem | 0csh0 14765 | Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
| ⊢ (∅ cyclShift 𝑁) = ∅ | ||
| Theorem | cshw0 14766 | A word cyclically shifted by 0 is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊) | ||
| Theorem | cshwmodn 14767 | Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))) | ||
| Theorem | cshwsublen 14768 | Cyclically shifting a word is invariant regarding subtraction of the word's length. (Contributed by AV, 3-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 − (♯‘𝑊)))) | ||
| Theorem | cshwn 14769 | A word cyclically shifted by its length is the word itself. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 26-Oct-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift (♯‘𝑊)) = 𝑊) | ||
| Theorem | cshwcl 14770 | A cyclically shifted word is a word over the same set as for the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 27-Oct-2018.) |
| ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 𝑁) ∈ Word 𝑉) | ||
| Theorem | cshwlen 14771 | The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)) | ||
| Theorem | cshwf 14772 | A cyclically shifted word is a function from a half-open range of integers of the same length as the word as domain to the set of symbols for the word. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):(0..^(♯‘𝑊))⟶𝐴) | ||
| Theorem | cshwfn 14773 | A cyclically shifted word is a function with a half-open range of integers of the same length as the word as domain. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) Fn (0..^(♯‘𝑊))) | ||
| Theorem | cshwrn 14774 | The range of a cyclically shifted word is a subset of the set of symbols for the word. (Contributed by AV, 12-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) ⊆ 𝑉) | ||
| Theorem | cshwidxmod 14775 | The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 13-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) (Proof shortened by AV, 12-Oct-2022.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘𝐼) = (𝑊‘((𝐼 + 𝑁) mod (♯‘𝑊)))) | ||
| Theorem | cshwidxmodr 14776 | The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼 − 𝑁) mod (♯‘𝑊))) = (𝑊‘𝐼)) | ||
| Theorem | cshwidx0mod 14777 | The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N (modulo the length of the word) of the original word. (Contributed by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | ||
| Theorem | cshwidx0 14778 | The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) | ||
| Theorem | cshwidxm1 14779 | The symbol at index ((n-N)-1) of a word of length n (not 0) cyclically shifted by N positions is the symbol at index (n-1) of the original word. (Contributed by AV, 23-Mar-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘(((♯‘𝑊) − 𝑁) − 1)) = (𝑊‘((♯‘𝑊) − 1))) | ||
| Theorem | cshwidxm 14780 | The symbol at index (n-N) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index 0 of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 𝑁)) = (𝑊‘0)) | ||
| Theorem | cshwidxn 14781 | The symbol at index (n-1) of a word of length n (not 0) cyclically shifted by N positions (not 0) is the symbol at index (N-1) of the original word. (Contributed by AV, 18-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((♯‘𝑊) − 1)) = (𝑊‘(𝑁 − 1))) | ||
| Theorem | cshf1 14782 | Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐹:(0..^(♯‘𝐹))–1-1→𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1→𝐴) | ||
| Theorem | cshinj 14783 | If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.) |
| ⊢ ((𝐹 ∈ Word 𝐴 ∧ Fun ◡𝐹 ∧ 𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun ◡𝐺)) | ||
| Theorem | repswcshw 14784 | A cyclically shifted "repeated symbol word". (Contributed by Alexander van der Vekens, 7-Nov-2018.) (Proof shortened by AV, 16-Oct-2022.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝐼 ∈ ℤ) → ((𝑆 repeatS 𝑁) cyclShift 𝐼) = (𝑆 repeatS 𝑁)) | ||
| Theorem | 2cshw 14785 | Cyclically shifting a word two times. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 4-Jun-2018.) (Revised by AV, 31-Oct-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑀) cyclShift 𝑁) = (𝑊 cyclShift (𝑀 + 𝑁))) | ||
| Theorem | 2cshwid 14786 | Cyclically shifting a word two times resulting in the word itself. (Contributed by AV, 7-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑁)) = 𝑊) | ||
| Theorem | lswcshw 14787 | The last symbol of a word cyclically shifted by N positions is the symbol at index (N-1) of the original word. (Contributed by AV, 21-Mar-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (1...(♯‘𝑊))) → (lastS‘(𝑊 cyclShift 𝑁)) = (𝑊‘(𝑁 − 1))) | ||
| Theorem | 2cshwcom 14788 | Cyclically shifting a word two times is commutative. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by Mario Carneiro/AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑁) cyclShift 𝑀) = ((𝑊 cyclShift 𝑀) cyclShift 𝑁)) | ||
| Theorem | cshwleneq 14789 | If the results of cyclically shifting two words are equal, the length of the two words was equal. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 5-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀)) → (♯‘𝑊) = (♯‘𝑈)) | ||
| Theorem | 3cshw 14790 | Cyclically shifting a word three times results in a once cyclically shifted word under certain circumstances. (Contributed by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (((𝑊 cyclShift 𝑀) cyclShift 𝑁) cyclShift ((♯‘𝑊) − 𝑀))) | ||
| Theorem | cshweqdif2 14791 | If cyclically shifting two words (of the same length) results in the same word, cyclically shifting one of the words by the difference of the numbers of shifts results in the other word. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 6-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉) ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑊 cyclShift 𝑁) = (𝑈 cyclShift 𝑀) → (𝑈 cyclShift (𝑀 − 𝑁)) = 𝑊)) | ||
| Theorem | cshweqdifid 14792 | If cyclically shifting a word by two positions results in the same word, cyclically shifting the word by the difference of these two positions results in the original word itself. (Contributed by AV, 21-Apr-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑊 cyclShift 𝑁) = (𝑊 cyclShift 𝑀) → (𝑊 cyclShift (𝑀 − 𝑁)) = 𝑊)) | ||
| Theorem | cshweqrep 14793* | If cyclically shifting a word by L position results in the word itself, the symbol at any position is repeated at multiples of L (modulo the length of the word) positions in the word. (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Revised by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ) → (((𝑊 cyclShift 𝐿) = 𝑊 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ∀𝑗 ∈ ℕ0 (𝑊‘𝐼) = (𝑊‘((𝐼 + (𝑗 · 𝐿)) mod (♯‘𝑊))))) | ||
| Theorem | cshw1 14794* | If cyclically shifting a word by 1 position results in the word itself, the word is build of identical symbols. Remark: also "valid" for an empty word! (Contributed by AV, 13-May-2018.) (Revised by AV, 7-Jun-2018.) (Proof shortened by AV, 1-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑊‘0)) | ||
| Theorem | cshw1repsw 14795 | If cyclically shifting a word by 1 position results in the word itself, the word is a "repeated symbol word". Remark: also "valid" for an empty word! (Contributed by AV, 8-Nov-2018.) (Proof shortened by AV, 10-Nov-2018.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ (𝑊 cyclShift 1) = 𝑊) → 𝑊 = ((𝑊‘0) repeatS (♯‘𝑊))) | ||
| Theorem | cshwsexa 14796* | The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.) |
| ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | ||
| Theorem | cshwsexaOLD 14797* | Obsolete version of cshwsexa 14796 as of 15-Jan-2025. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | ||
| Theorem | 2cshwcshw 14798* | If a word is a cyclically shifted word, and a second word is the result of cyclically shifting the same word, then the second word is the result of cyclically shifting the first word. (Contributed by AV, 11-May-2018.) (Revised by AV, 12-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
| ⊢ ((𝑌 ∈ Word 𝑉 ∧ (♯‘𝑌) = 𝑁) → ((𝐾 ∈ (0...𝑁) ∧ 𝑋 = (𝑌 cyclShift 𝐾) ∧ ∃𝑚 ∈ (0...𝑁)𝑍 = (𝑌 cyclShift 𝑚)) → ∃𝑛 ∈ (0...𝑁)𝑍 = (𝑋 cyclShift 𝑛))) | ||
| Theorem | scshwfzeqfzo 14799* | For a nonempty word the sets of shifted words, expressd by a finite interval of integers or by a half-open integer range are identical. (Contributed by Alexander van der Vekens, 15-Jun-2018.) |
| ⊢ ((𝑋 ∈ Word 𝑉 ∧ 𝑋 ≠ ∅ ∧ 𝑁 = (♯‘𝑋)) → {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑋 cyclShift 𝑛)} = {𝑦 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^𝑁)𝑦 = (𝑋 cyclShift 𝑛)}) | ||
| Theorem | cshwcshid 14800* | A cyclically shifted word can be reconstructed by cyclically shifting it again. Lemma for erclwwlksym 29957 and erclwwlknsym 30006. (Contributed by AV, 8-Apr-2018.) (Revised by AV, 11-Jun-2018.) (Proof shortened by AV, 3-Nov-2018.) |
| ⊢ (𝜑 → 𝑦 ∈ Word 𝑉) & ⊢ (𝜑 → (♯‘𝑥) = (♯‘𝑦)) ⇒ ⊢ (𝜑 → ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → ∃𝑛 ∈ (0...(♯‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |