Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshfn | Structured version Visualization version GIF version |
Description: Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
Ref | Expression |
---|---|
cshfn | ⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2763 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 = ∅ ↔ 𝑊 = ∅)) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑤 = ∅ ↔ 𝑊 = ∅)) |
3 | simpl 486 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → 𝑤 = 𝑊) | |
4 | simpr 488 | . . . . . . 7 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
5 | fveq2 6664 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
6 | 5 | adantr 484 | . . . . . . 7 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (♯‘𝑤) = (♯‘𝑊)) |
7 | 4, 6 | oveq12d 7175 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑛 mod (♯‘𝑤)) = (𝑁 mod (♯‘𝑊))) |
8 | 7, 6 | opeq12d 4775 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉 = 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) |
9 | 3, 8 | oveq12d 7175 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) = (𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉)) |
10 | 3, 7 | oveq12d 7175 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑤 prefix (𝑛 mod (♯‘𝑤))) = (𝑊 prefix (𝑁 mod (♯‘𝑊)))) |
11 | 9, 10 | oveq12d 7175 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) = ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) |
12 | 2, 11 | ifbieq2d 4450 | . 2 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) |
13 | df-csh 14212 | . 2 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
14 | 0ex 5182 | . . 3 ⊢ ∅ ∈ V | |
15 | ovex 7190 | . . 3 ⊢ ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) ∈ V | |
16 | 14, 15 | ifex 4474 | . 2 ⊢ if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) ∈ V |
17 | 12, 13, 16 | ovmpoa 7307 | 1 ⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1539 ∈ wcel 2112 {cab 2736 ∃wrex 3072 ∅c0 4228 ifcif 4424 〈cop 4532 Fn wfn 6336 ‘cfv 6341 (class class class)co 7157 0cc0 10589 ℕ0cn0 11948 ℤcz 12034 ..^cfzo 13096 mod cmo 13300 ♯chash 13754 ++ cconcat 13983 substr csubstr 14063 prefix cpfx 14093 cyclShift ccsh 14211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-iota 6300 df-fun 6343 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-csh 14212 |
This theorem is referenced by: cshword 14214 |
Copyright terms: Public domain | W3C validator |