MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshfn Structured version   Visualization version   GIF version

Theorem cshfn 14810
Description: Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.)
Assertion
Ref Expression
cshfn ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
Distinct variable group:   𝑓,𝑙
Allowed substitution hints:   𝑁(𝑓,𝑙)   𝑊(𝑓,𝑙)

Proof of Theorem cshfn
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2738 . . . 4 (𝑤 = 𝑊 → (𝑤 = ∅ ↔ 𝑊 = ∅))
21adantr 480 . . 3 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑤 = ∅ ↔ 𝑊 = ∅))
3 simpl 482 . . . . 5 ((𝑤 = 𝑊𝑛 = 𝑁) → 𝑤 = 𝑊)
4 simpr 484 . . . . . . 7 ((𝑤 = 𝑊𝑛 = 𝑁) → 𝑛 = 𝑁)
5 fveq2 6886 . . . . . . . 8 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
65adantr 480 . . . . . . 7 ((𝑤 = 𝑊𝑛 = 𝑁) → (♯‘𝑤) = (♯‘𝑊))
74, 6oveq12d 7431 . . . . . 6 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑛 mod (♯‘𝑤)) = (𝑁 mod (♯‘𝑊)))
87, 6opeq12d 4861 . . . . 5 ((𝑤 = 𝑊𝑛 = 𝑁) → ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩ = ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)
93, 8oveq12d 7431 . . . 4 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) = (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
103, 7oveq12d 7431 . . . 4 ((𝑤 = 𝑊𝑛 = 𝑁) → (𝑤 prefix (𝑛 mod (♯‘𝑤))) = (𝑊 prefix (𝑁 mod (♯‘𝑊))))
119, 10oveq12d 7431 . . 3 ((𝑤 = 𝑊𝑛 = 𝑁) → ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
122, 11ifbieq2d 4532 . 2 ((𝑤 = 𝑊𝑛 = 𝑁) → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
13 df-csh 14809 . 2 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
14 0ex 5287 . . 3 ∅ ∈ V
15 ovex 7446 . . 3 ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) ∈ V
1614, 15ifex 4556 . 2 if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) ∈ V
1712, 13, 16ovmpoa 7570 1 ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  {cab 2712  wrex 3059  c0 4313  ifcif 4505  cop 4612   Fn wfn 6536  cfv 6541  (class class class)co 7413  0cc0 11137  0cn0 12509  cz 12596  ..^cfzo 13676   mod cmo 13891  chash 14351   ++ cconcat 14590   substr csubstr 14660   prefix cpfx 14690   cyclShift ccsh 14808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-csh 14809
This theorem is referenced by:  cshword  14811
  Copyright terms: Public domain W3C validator