![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshfn | Structured version Visualization version GIF version |
Description: Perform a cyclical shift for a function over a half-open range of nonnegative integers. (Contributed by AV, 20-May-2018.) (Revised by AV, 17-Nov-2018.) (Revised by AV, 4-Nov-2022.) |
Ref | Expression |
---|---|
cshfn | ⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑤 = ∅ ↔ 𝑊 = ∅)) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑤 = ∅ ↔ 𝑊 = ∅)) |
3 | simpl 482 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → 𝑤 = 𝑊) | |
4 | simpr 484 | . . . . . . 7 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → 𝑛 = 𝑁) | |
5 | fveq2 6922 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊)) | |
6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (♯‘𝑤) = (♯‘𝑊)) |
7 | 4, 6 | oveq12d 7468 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑛 mod (♯‘𝑤)) = (𝑁 mod (♯‘𝑊))) |
8 | 7, 6 | opeq12d 4905 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉 = 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) |
9 | 3, 8 | oveq12d 7468 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) = (𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉)) |
10 | 3, 7 | oveq12d 7468 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → (𝑤 prefix (𝑛 mod (♯‘𝑤))) = (𝑊 prefix (𝑁 mod (♯‘𝑊)))) |
11 | 9, 10 | oveq12d 7468 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) = ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) |
12 | 2, 11 | ifbieq2d 4574 | . 2 ⊢ ((𝑤 = 𝑊 ∧ 𝑛 = 𝑁) → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) |
13 | df-csh 14839 | . 2 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
14 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
15 | ovex 7483 | . . 3 ⊢ ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))) ∈ V | |
16 | 14, 15 | ifex 4598 | . 2 ⊢ if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) ∈ V |
17 | 12, 13, 16 | ovmpoa 7607 | 1 ⊢ ((𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr 〈(𝑁 mod (♯‘𝑊)), (♯‘𝑊)〉) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ∅c0 4352 ifcif 4548 〈cop 4654 Fn wfn 6570 ‘cfv 6575 (class class class)co 7450 0cc0 11186 ℕ0cn0 12555 ℤcz 12641 ..^cfzo 13713 mod cmo 13922 ♯chash 14381 ++ cconcat 14620 substr csubstr 14690 prefix cpfx 14720 cyclShift ccsh 14838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6527 df-fun 6577 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-csh 14839 |
This theorem is referenced by: cshword 14841 |
Copyright terms: Public domain | W3C validator |