| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0csh0 | Structured version Visualization version GIF version | ||
| Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
| Ref | Expression |
|---|---|
| 0csh0 | ⊢ (∅ cyclShift 𝑁) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csh 14698 | . . . 4 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))) |
| 3 | iftrue 4480 | . . . 4 ⊢ (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) | |
| 4 | 3 | ad2antrl 728 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) |
| 5 | 0nn0 12403 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | f0 6709 | . . . . . . 7 ⊢ ∅:∅⟶V | |
| 7 | ffn 6656 | . . . . . . . 8 ⊢ (∅:∅⟶V → ∅ Fn ∅) | |
| 8 | fzo0 13585 | . . . . . . . . . 10 ⊢ (0..^0) = ∅ | |
| 9 | 8 | eqcomi 2742 | . . . . . . . . 9 ⊢ ∅ = (0..^0) |
| 10 | 9 | fneq2i 6584 | . . . . . . . 8 ⊢ (∅ Fn ∅ ↔ ∅ Fn (0..^0)) |
| 11 | 7, 10 | sylib 218 | . . . . . . 7 ⊢ (∅:∅⟶V → ∅ Fn (0..^0)) |
| 12 | 6, 11 | ax-mp 5 | . . . . . 6 ⊢ ∅ Fn (0..^0) |
| 13 | id 22 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ∈ ℕ0) | |
| 14 | oveq2 7360 | . . . . . . . . 9 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
| 15 | 14 | fneq2d 6580 | . . . . . . . 8 ⊢ (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((0 ∈ ℕ0 ∧ 𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
| 17 | 13, 16 | rspcedv 3566 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
| 18 | 5, 12, 17 | mp2 9 | . . . . 5 ⊢ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙) |
| 19 | 0ex 5247 | . . . . . 6 ⊢ ∅ ∈ V | |
| 20 | fneq1 6577 | . . . . . . 7 ⊢ (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙))) | |
| 21 | 20 | rexbidv 3157 | . . . . . 6 ⊢ (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
| 22 | 19, 21 | elab 3631 | . . . . 5 ⊢ (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)) |
| 23 | 18, 22 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}) |
| 25 | id 22 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 26 | 19 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ V) |
| 27 | 2, 4, 24, 25, 26 | ovmpod 7504 | . 2 ⊢ (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) |
| 28 | cshnz 14701 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) | |
| 29 | 27, 28 | pm2.61i 182 | 1 ⊢ (∅ cyclShift 𝑁) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 {cab 2711 ∃wrex 3057 Vcvv 3437 ∅c0 4282 ifcif 4474 〈cop 4581 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 0cc0 11013 ℕ0cn0 12388 ℤcz 12475 ..^cfzo 13556 mod cmo 13775 ♯chash 14239 ++ cconcat 14479 substr csubstr 14550 prefix cpfx 14580 cyclShift ccsh 14697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-csh 14698 |
| This theorem is referenced by: cshw0 14703 cshwmodn 14704 cshwn 14706 cshwlen 14708 repswcshw 14721 |
| Copyright terms: Public domain | W3C validator |