MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0csh0 Structured version   Visualization version   GIF version

Theorem 0csh0 13874
Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
0csh0 (∅ cyclShift 𝑁) = ∅

Proof of Theorem 0csh0
Dummy variables 𝑓 𝑙 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csh 13867 . . . 4 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
21a1i 11 . . 3 (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))))
3 iftrue 4281 . . . 4 (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅)
43ad2antrl 720 . . 3 ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅)
5 0nn0 11593 . . . . . 6 0 ∈ ℕ0
6 f0 6299 . . . . . . 7 ∅:∅⟶V
7 ffn 6254 . . . . . . . 8 (∅:∅⟶V → ∅ Fn ∅)
8 fzo0 12743 . . . . . . . . . 10 (0..^0) = ∅
98eqcomi 2806 . . . . . . . . 9 ∅ = (0..^0)
109fneq2i 6195 . . . . . . . 8 (∅ Fn ∅ ↔ ∅ Fn (0..^0))
117, 10sylib 210 . . . . . . 7 (∅:∅⟶V → ∅ Fn (0..^0))
126, 11ax-mp 5 . . . . . 6 ∅ Fn (0..^0)
13 id 22 . . . . . . 7 (0 ∈ ℕ0 → 0 ∈ ℕ0)
14 oveq2 6884 . . . . . . . . 9 (𝑙 = 0 → (0..^𝑙) = (0..^0))
1514fneq2d 6191 . . . . . . . 8 (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0)))
1615adantl 474 . . . . . . 7 ((0 ∈ ℕ0𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0)))
1713, 16rspcedv 3499 . . . . . 6 (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)))
185, 12, 17mp2 9 . . . . 5 𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)
19 0ex 4982 . . . . . 6 ∅ ∈ V
20 fneq1 6188 . . . . . . 7 (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙)))
2120rexbidv 3231 . . . . . 6 (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)))
2219, 21elab 3540 . . . . 5 (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))
2318, 22mpbir 223 . . . 4 ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}
2423a1i 11 . . 3 (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)})
25 id 22 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
2619a1i 11 . . 3 (𝑁 ∈ ℤ → ∅ ∈ V)
272, 4, 24, 25, 26ovmpt2d 7020 . 2 (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅)
28 cshnz 13872 . 2 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅)
2927, 28pm2.61i 177 1 (∅ cyclShift 𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1653  wcel 2157  {cab 2783  wrex 3088  Vcvv 3383  c0 4113  ifcif 4275  cop 4372   Fn wfn 6094  wf 6095  cfv 6099  (class class class)co 6876  cmpt2 6878  0cc0 10222  0cn0 11576  cz 11662  ..^cfzo 12716   mod cmo 12919  chash 13366   ++ cconcat 13586   substr csubstr 13661   prefix cpfx 13710   cyclShift ccsh 13865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-csh 13867
This theorem is referenced by:  cshw0  13876  cshwmodn  13877  cshwn  13879  cshwlen  13881  repswcshw  13894
  Copyright terms: Public domain W3C validator