MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0csh0 Structured version   Visualization version   GIF version

Theorem 0csh0 14697
Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
0csh0 (∅ cyclShift 𝑁) = ∅

Proof of Theorem 0csh0
Dummy variables 𝑓 𝑙 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csh 14693 . . . 4 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
21a1i 11 . . 3 (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))))
3 iftrue 4481 . . . 4 (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅)
43ad2antrl 728 . . 3 ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅)
5 0nn0 12393 . . . . . 6 0 ∈ ℕ0
6 f0 6704 . . . . . . 7 ∅:∅⟶V
7 ffn 6651 . . . . . . . 8 (∅:∅⟶V → ∅ Fn ∅)
8 fzo0 13580 . . . . . . . . . 10 (0..^0) = ∅
98eqcomi 2740 . . . . . . . . 9 ∅ = (0..^0)
109fneq2i 6579 . . . . . . . 8 (∅ Fn ∅ ↔ ∅ Fn (0..^0))
117, 10sylib 218 . . . . . . 7 (∅:∅⟶V → ∅ Fn (0..^0))
126, 11ax-mp 5 . . . . . 6 ∅ Fn (0..^0)
13 id 22 . . . . . . 7 (0 ∈ ℕ0 → 0 ∈ ℕ0)
14 oveq2 7354 . . . . . . . . 9 (𝑙 = 0 → (0..^𝑙) = (0..^0))
1514fneq2d 6575 . . . . . . . 8 (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0)))
1615adantl 481 . . . . . . 7 ((0 ∈ ℕ0𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0)))
1713, 16rspcedv 3570 . . . . . 6 (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)))
185, 12, 17mp2 9 . . . . 5 𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)
19 0ex 5245 . . . . . 6 ∅ ∈ V
20 fneq1 6572 . . . . . . 7 (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙)))
2120rexbidv 3156 . . . . . 6 (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)))
2219, 21elab 3635 . . . . 5 (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))
2318, 22mpbir 231 . . . 4 ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}
2423a1i 11 . . 3 (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)})
25 id 22 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
2619a1i 11 . . 3 (𝑁 ∈ ℤ → ∅ ∈ V)
272, 4, 24, 25, 26ovmpod 7498 . 2 (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅)
28 cshnz 14696 . 2 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅)
2927, 28pm2.61i 182 1 (∅ cyclShift 𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  c0 4283  ifcif 4475  cop 4582   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  0cc0 11003  0cn0 12378  cz 12465  ..^cfzo 13551   mod cmo 13770  chash 14234   ++ cconcat 14474   substr csubstr 14545   prefix cpfx 14575   cyclShift ccsh 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-csh 14693
This theorem is referenced by:  cshw0  14698  cshwmodn  14699  cshwn  14701  cshwlen  14703  repswcshw  14716
  Copyright terms: Public domain W3C validator