![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0csh0 | Structured version Visualization version GIF version |
Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
Ref | Expression |
---|---|
0csh0 | ⊢ (∅ cyclShift 𝑁) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csh 14735 | . . . 4 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))) |
3 | iftrue 4533 | . . . 4 ⊢ (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) | |
4 | 3 | ad2antrl 726 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) |
5 | 0nn0 12483 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | f0 6769 | . . . . . . 7 ⊢ ∅:∅⟶V | |
7 | ffn 6714 | . . . . . . . 8 ⊢ (∅:∅⟶V → ∅ Fn ∅) | |
8 | fzo0 13652 | . . . . . . . . . 10 ⊢ (0..^0) = ∅ | |
9 | 8 | eqcomi 2741 | . . . . . . . . 9 ⊢ ∅ = (0..^0) |
10 | 9 | fneq2i 6644 | . . . . . . . 8 ⊢ (∅ Fn ∅ ↔ ∅ Fn (0..^0)) |
11 | 7, 10 | sylib 217 | . . . . . . 7 ⊢ (∅:∅⟶V → ∅ Fn (0..^0)) |
12 | 6, 11 | ax-mp 5 | . . . . . 6 ⊢ ∅ Fn (0..^0) |
13 | id 22 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ∈ ℕ0) | |
14 | oveq2 7413 | . . . . . . . . 9 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
15 | 14 | fneq2d 6640 | . . . . . . . 8 ⊢ (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
16 | 15 | adantl 482 | . . . . . . 7 ⊢ ((0 ∈ ℕ0 ∧ 𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
17 | 13, 16 | rspcedv 3605 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
18 | 5, 12, 17 | mp2 9 | . . . . 5 ⊢ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙) |
19 | 0ex 5306 | . . . . . 6 ⊢ ∅ ∈ V | |
20 | fneq1 6637 | . . . . . . 7 ⊢ (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙))) | |
21 | 20 | rexbidv 3178 | . . . . . 6 ⊢ (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
22 | 19, 21 | elab 3667 | . . . . 5 ⊢ (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)) |
23 | 18, 22 | mpbir 230 | . . . 4 ⊢ ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} |
24 | 23 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}) |
25 | id 22 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
26 | 19 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ V) |
27 | 2, 4, 24, 25, 26 | ovmpod 7556 | . 2 ⊢ (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) |
28 | cshnz 14738 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) | |
29 | 27, 28 | pm2.61i 182 | 1 ⊢ (∅ cyclShift 𝑁) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 ∃wrex 3070 Vcvv 3474 ∅c0 4321 ifcif 4527 ⟨cop 4633 Fn wfn 6535 ⟶wf 6536 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 0cc0 11106 ℕ0cn0 12468 ℤcz 12554 ..^cfzo 13623 mod cmo 13830 ♯chash 14286 ++ cconcat 14516 substr csubstr 14586 prefix cpfx 14616 cyclShift ccsh 14734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-csh 14735 |
This theorem is referenced by: cshw0 14740 cshwmodn 14741 cshwn 14743 cshwlen 14745 repswcshw 14758 |
Copyright terms: Public domain | W3C validator |