![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0csh0 | Structured version Visualization version GIF version |
Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
Ref | Expression |
---|---|
0csh0 | ⊢ (∅ cyclShift 𝑁) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csh 13867 | . . . 4 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))) |
3 | iftrue 4281 | . . . 4 ⊢ (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) | |
4 | 3 | ad2antrl 720 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) |
5 | 0nn0 11593 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | f0 6299 | . . . . . . 7 ⊢ ∅:∅⟶V | |
7 | ffn 6254 | . . . . . . . 8 ⊢ (∅:∅⟶V → ∅ Fn ∅) | |
8 | fzo0 12743 | . . . . . . . . . 10 ⊢ (0..^0) = ∅ | |
9 | 8 | eqcomi 2806 | . . . . . . . . 9 ⊢ ∅ = (0..^0) |
10 | 9 | fneq2i 6195 | . . . . . . . 8 ⊢ (∅ Fn ∅ ↔ ∅ Fn (0..^0)) |
11 | 7, 10 | sylib 210 | . . . . . . 7 ⊢ (∅:∅⟶V → ∅ Fn (0..^0)) |
12 | 6, 11 | ax-mp 5 | . . . . . 6 ⊢ ∅ Fn (0..^0) |
13 | id 22 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ∈ ℕ0) | |
14 | oveq2 6884 | . . . . . . . . 9 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
15 | 14 | fneq2d 6191 | . . . . . . . 8 ⊢ (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
16 | 15 | adantl 474 | . . . . . . 7 ⊢ ((0 ∈ ℕ0 ∧ 𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
17 | 13, 16 | rspcedv 3499 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
18 | 5, 12, 17 | mp2 9 | . . . . 5 ⊢ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙) |
19 | 0ex 4982 | . . . . . 6 ⊢ ∅ ∈ V | |
20 | fneq1 6188 | . . . . . . 7 ⊢ (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙))) | |
21 | 20 | rexbidv 3231 | . . . . . 6 ⊢ (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
22 | 19, 21 | elab 3540 | . . . . 5 ⊢ (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)) |
23 | 18, 22 | mpbir 223 | . . . 4 ⊢ ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} |
24 | 23 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}) |
25 | id 22 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
26 | 19 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ V) |
27 | 2, 4, 24, 25, 26 | ovmpt2d 7020 | . 2 ⊢ (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) |
28 | cshnz 13872 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) | |
29 | 27, 28 | pm2.61i 177 | 1 ⊢ (∅ cyclShift 𝑁) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1653 ∈ wcel 2157 {cab 2783 ∃wrex 3088 Vcvv 3383 ∅c0 4113 ifcif 4275 〈cop 4372 Fn wfn 6094 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 0cc0 10222 ℕ0cn0 11576 ℤcz 11662 ..^cfzo 12716 mod cmo 12919 ♯chash 13366 ++ cconcat 13586 substr csubstr 13661 prefix cpfx 13710 cyclShift ccsh 13865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 df-fzo 12717 df-csh 13867 |
This theorem is referenced by: cshw0 13876 cshwmodn 13877 cshwn 13879 cshwlen 13881 repswcshw 13894 |
Copyright terms: Public domain | W3C validator |