Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0csh0 | Structured version Visualization version GIF version |
Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
Ref | Expression |
---|---|
0csh0 | ⊢ (∅ cyclShift 𝑁) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csh 14502 | . . . 4 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))) |
3 | iftrue 4465 | . . . 4 ⊢ (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) | |
4 | 3 | ad2antrl 725 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) |
5 | 0nn0 12248 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | f0 6655 | . . . . . . 7 ⊢ ∅:∅⟶V | |
7 | ffn 6600 | . . . . . . . 8 ⊢ (∅:∅⟶V → ∅ Fn ∅) | |
8 | fzo0 13411 | . . . . . . . . . 10 ⊢ (0..^0) = ∅ | |
9 | 8 | eqcomi 2747 | . . . . . . . . 9 ⊢ ∅ = (0..^0) |
10 | 9 | fneq2i 6531 | . . . . . . . 8 ⊢ (∅ Fn ∅ ↔ ∅ Fn (0..^0)) |
11 | 7, 10 | sylib 217 | . . . . . . 7 ⊢ (∅:∅⟶V → ∅ Fn (0..^0)) |
12 | 6, 11 | ax-mp 5 | . . . . . 6 ⊢ ∅ Fn (0..^0) |
13 | id 22 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ∈ ℕ0) | |
14 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
15 | 14 | fneq2d 6527 | . . . . . . . 8 ⊢ (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
16 | 15 | adantl 482 | . . . . . . 7 ⊢ ((0 ∈ ℕ0 ∧ 𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
17 | 13, 16 | rspcedv 3554 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
18 | 5, 12, 17 | mp2 9 | . . . . 5 ⊢ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙) |
19 | 0ex 5231 | . . . . . 6 ⊢ ∅ ∈ V | |
20 | fneq1 6524 | . . . . . . 7 ⊢ (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙))) | |
21 | 20 | rexbidv 3226 | . . . . . 6 ⊢ (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
22 | 19, 21 | elab 3609 | . . . . 5 ⊢ (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)) |
23 | 18, 22 | mpbir 230 | . . . 4 ⊢ ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} |
24 | 23 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}) |
25 | id 22 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
26 | 19 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ V) |
27 | 2, 4, 24, 25, 26 | ovmpod 7425 | . 2 ⊢ (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) |
28 | cshnz 14505 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) | |
29 | 27, 28 | pm2.61i 182 | 1 ⊢ (∅ cyclShift 𝑁) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 Vcvv 3432 ∅c0 4256 ifcif 4459 〈cop 4567 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 ℕ0cn0 12233 ℤcz 12319 ..^cfzo 13382 mod cmo 13589 ♯chash 14044 ++ cconcat 14273 substr csubstr 14353 prefix cpfx 14383 cyclShift ccsh 14501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-csh 14502 |
This theorem is referenced by: cshw0 14507 cshwmodn 14508 cshwn 14510 cshwlen 14512 repswcshw 14525 |
Copyright terms: Public domain | W3C validator |