MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0csh0 Structured version   Visualization version   GIF version

Theorem 0csh0 14147
Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
0csh0 (∅ cyclShift 𝑁) = ∅

Proof of Theorem 0csh0
Dummy variables 𝑓 𝑙 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csh 14143 . . . 4 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
21a1i 11 . . 3 (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))))
3 iftrue 4471 . . . 4 (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅)
43ad2antrl 726 . . 3 ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅)
5 0nn0 11904 . . . . . 6 0 ∈ ℕ0
6 f0 6553 . . . . . . 7 ∅:∅⟶V
7 ffn 6507 . . . . . . . 8 (∅:∅⟶V → ∅ Fn ∅)
8 fzo0 13053 . . . . . . . . . 10 (0..^0) = ∅
98eqcomi 2828 . . . . . . . . 9 ∅ = (0..^0)
109fneq2i 6444 . . . . . . . 8 (∅ Fn ∅ ↔ ∅ Fn (0..^0))
117, 10sylib 220 . . . . . . 7 (∅:∅⟶V → ∅ Fn (0..^0))
126, 11ax-mp 5 . . . . . 6 ∅ Fn (0..^0)
13 id 22 . . . . . . 7 (0 ∈ ℕ0 → 0 ∈ ℕ0)
14 oveq2 7156 . . . . . . . . 9 (𝑙 = 0 → (0..^𝑙) = (0..^0))
1514fneq2d 6440 . . . . . . . 8 (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0)))
1615adantl 484 . . . . . . 7 ((0 ∈ ℕ0𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0)))
1713, 16rspcedv 3614 . . . . . 6 (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)))
185, 12, 17mp2 9 . . . . 5 𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)
19 0ex 5202 . . . . . 6 ∅ ∈ V
20 fneq1 6437 . . . . . . 7 (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙)))
2120rexbidv 3295 . . . . . 6 (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)))
2219, 21elab 3665 . . . . 5 (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))
2318, 22mpbir 233 . . . 4 ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}
2423a1i 11 . . 3 (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)})
25 id 22 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℤ)
2619a1i 11 . . 3 (𝑁 ∈ ℤ → ∅ ∈ V)
272, 4, 24, 25, 26ovmpod 7294 . 2 (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅)
28 cshnz 14146 . 2 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅)
2927, 28pm2.61i 184 1 (∅ cyclShift 𝑁) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1530  wcel 2107  {cab 2797  wrex 3137  Vcvv 3493  c0 4289  ifcif 4465  cop 4565   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cmpo 7150  0cc0 10529  0cn0 11889  cz 11973  ..^cfzo 13025   mod cmo 13229  chash 13682   ++ cconcat 13914   substr csubstr 13994   prefix cpfx 14024   cyclShift ccsh 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-csh 14143
This theorem is referenced by:  cshw0  14148  cshwmodn  14149  cshwn  14151  cshwlen  14153  repswcshw  14166
  Copyright terms: Public domain W3C validator