| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0csh0 | Structured version Visualization version GIF version | ||
| Description: Cyclically shifting an empty set/word always results in the empty word/set. (Contributed by AV, 25-Oct-2018.) (Revised by AV, 17-Nov-2018.) |
| Ref | Expression |
|---|---|
| 0csh0 | ⊢ (∅ cyclShift 𝑁) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csh 14761 | . . . 4 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))) |
| 3 | iftrue 4497 | . . . 4 ⊢ (𝑤 = ∅ → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) | |
| 4 | 3 | ad2antrl 728 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ (𝑤 = ∅ ∧ 𝑛 = 𝑁)) → if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) = ∅) |
| 5 | 0nn0 12464 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 6 | f0 6744 | . . . . . . 7 ⊢ ∅:∅⟶V | |
| 7 | ffn 6691 | . . . . . . . 8 ⊢ (∅:∅⟶V → ∅ Fn ∅) | |
| 8 | fzo0 13651 | . . . . . . . . . 10 ⊢ (0..^0) = ∅ | |
| 9 | 8 | eqcomi 2739 | . . . . . . . . 9 ⊢ ∅ = (0..^0) |
| 10 | 9 | fneq2i 6619 | . . . . . . . 8 ⊢ (∅ Fn ∅ ↔ ∅ Fn (0..^0)) |
| 11 | 7, 10 | sylib 218 | . . . . . . 7 ⊢ (∅:∅⟶V → ∅ Fn (0..^0)) |
| 12 | 6, 11 | ax-mp 5 | . . . . . 6 ⊢ ∅ Fn (0..^0) |
| 13 | id 22 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 0 ∈ ℕ0) | |
| 14 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑙 = 0 → (0..^𝑙) = (0..^0)) | |
| 15 | 14 | fneq2d 6615 | . . . . . . . 8 ⊢ (𝑙 = 0 → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((0 ∈ ℕ0 ∧ 𝑙 = 0) → (∅ Fn (0..^𝑙) ↔ ∅ Fn (0..^0))) |
| 17 | 13, 16 | rspcedv 3584 | . . . . . 6 ⊢ (0 ∈ ℕ0 → (∅ Fn (0..^0) → ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
| 18 | 5, 12, 17 | mp2 9 | . . . . 5 ⊢ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙) |
| 19 | 0ex 5265 | . . . . . 6 ⊢ ∅ ∈ V | |
| 20 | fneq1 6612 | . . . . . . 7 ⊢ (𝑓 = ∅ → (𝑓 Fn (0..^𝑙) ↔ ∅ Fn (0..^𝑙))) | |
| 21 | 20 | rexbidv 3158 | . . . . . 6 ⊢ (𝑓 = ∅ → (∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙))) |
| 22 | 19, 21 | elab 3649 | . . . . 5 ⊢ (∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 ∅ Fn (0..^𝑙)) |
| 23 | 18, 22 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} |
| 24 | 23 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}) |
| 25 | id 22 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 26 | 19 | a1i 11 | . . 3 ⊢ (𝑁 ∈ ℤ → ∅ ∈ V) |
| 27 | 2, 4, 24, 25, 26 | ovmpod 7544 | . 2 ⊢ (𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) |
| 28 | cshnz 14764 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → (∅ cyclShift 𝑁) = ∅) | |
| 29 | 27, 28 | pm2.61i 182 | 1 ⊢ (∅ cyclShift 𝑁) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 ∅c0 4299 ifcif 4491 〈cop 4598 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 0cc0 11075 ℕ0cn0 12449 ℤcz 12536 ..^cfzo 13622 mod cmo 13838 ♯chash 14302 ++ cconcat 14542 substr csubstr 14612 prefix cpfx 14642 cyclShift ccsh 14760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-csh 14761 |
| This theorem is referenced by: cshw0 14766 cshwmodn 14767 cshwn 14769 cshwlen 14771 repswcshw 14784 |
| Copyright terms: Public domain | W3C validator |