MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshnz Structured version   Visualization version   GIF version

Theorem cshnz 14744
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
cshnz 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅)

Proof of Theorem cshnz
Dummy variables 𝑓 𝑙 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-csh 14741 . . 3 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
2 0ex 5298 . . . 4 ∅ ∈ V
3 ovex 7435 . . . 4 ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) ∈ V
42, 3ifex 4571 . . 3 if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) ∈ V
51, 4dmmpo 8051 . 2 dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ)
6 id 22 . . 3 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ)
76intnand 488 . 2 𝑁 ∈ ℤ → ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ))
8 ndmovg 7584 . 2 ((dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) ∧ ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ∅)
95, 7, 8sylancr 586 1 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  wrex 3062  c0 4315  ifcif 4521  cop 4627   × cxp 5665  dom cdm 5667   Fn wfn 6529  cfv 6534  (class class class)co 7402  0cc0 11107  0cn0 12471  cz 12557  ..^cfzo 13628   mod cmo 13835  chash 14291   ++ cconcat 14522   substr csubstr 14592   prefix cpfx 14622   cyclShift ccsh 14740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-csh 14741
This theorem is referenced by:  0csh0  14745  cshwcl  14750
  Copyright terms: Public domain W3C validator