Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cshnz | Structured version Visualization version GIF version |
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) |
Ref | Expression |
---|---|
cshnz | ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csh 14483 | . . 3 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
2 | 0ex 5234 | . . . 4 ⊢ ∅ ∈ V | |
3 | ovex 7301 | . . . 4 ⊢ ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) ∈ V | |
4 | 2, 3 | ifex 4514 | . . 3 ⊢ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) ∈ V |
5 | 1, 4 | dmmpo 7897 | . 2 ⊢ dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) |
6 | id 22 | . . 3 ⊢ (¬ 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ) | |
7 | 6 | intnand 488 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) |
8 | ndmovg 7446 | . 2 ⊢ ((dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) ∧ ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ∅) | |
9 | 5, 7, 8 | sylancr 586 | 1 ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ∃wrex 3066 ∅c0 4261 ifcif 4464 〈cop 4572 × cxp 5586 dom cdm 5588 Fn wfn 6425 ‘cfv 6430 (class class class)co 7268 0cc0 10855 ℕ0cn0 12216 ℤcz 12302 ..^cfzo 13364 mod cmo 13570 ♯chash 14025 ++ cconcat 14254 substr csubstr 14334 prefix cpfx 14364 cyclShift ccsh 14482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-csh 14483 |
This theorem is referenced by: 0csh0 14487 cshwcl 14492 |
Copyright terms: Public domain | W3C validator |