![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshnz | Structured version Visualization version GIF version |
Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) |
Ref | Expression |
---|---|
cshnz | ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csh 14771 | . . 3 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
2 | 0ex 5307 | . . . 4 ⊢ ∅ ∈ V | |
3 | ovex 7453 | . . . 4 ⊢ ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) ∈ V | |
4 | 2, 3 | ifex 4579 | . . 3 ⊢ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) ∈ V |
5 | 1, 4 | dmmpo 8075 | . 2 ⊢ dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) |
6 | id 22 | . . 3 ⊢ (¬ 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ) | |
7 | 6 | intnand 488 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) |
8 | ndmovg 7604 | . 2 ⊢ ((dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) ∧ ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ∅) | |
9 | 5, 7, 8 | sylancr 586 | 1 ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 ∃wrex 3067 ∅c0 4323 ifcif 4529 ⟨cop 4635 × cxp 5676 dom cdm 5678 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 0cc0 11138 ℕ0cn0 12502 ℤcz 12588 ..^cfzo 13659 mod cmo 13866 ♯chash 14321 ++ cconcat 14552 substr csubstr 14622 prefix cpfx 14652 cyclShift ccsh 14770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-csh 14771 |
This theorem is referenced by: 0csh0 14775 cshwcl 14780 |
Copyright terms: Public domain | W3C validator |