|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cshnz | Structured version Visualization version GIF version | ||
| Description: A cyclical shift is the empty set if the number of shifts is not an integer. (Contributed by Alexander van der Vekens, 21-May-2018.) (Revised by AV, 17-Nov-2018.) | 
| Ref | Expression | 
|---|---|
| cshnz | ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-csh 14828 | . . 3 ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) | |
| 2 | 0ex 5306 | . . . 4 ⊢ ∅ ∈ V | |
| 3 | ovex 7465 | . . . 4 ⊢ ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))) ∈ V | |
| 4 | 2, 3 | ifex 4575 | . . 3 ⊢ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))) ∈ V | 
| 5 | 1, 4 | dmmpo 8097 | . 2 ⊢ dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) | 
| 6 | id 22 | . . 3 ⊢ (¬ 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ) | |
| 7 | 6 | intnand 488 | . 2 ⊢ (¬ 𝑁 ∈ ℤ → ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) | 
| 8 | ndmovg 7617 | . 2 ⊢ ((dom cyclShift = ({𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} × ℤ) ∧ ¬ (𝑊 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ∅) | |
| 9 | 5, 7, 8 | sylancr 587 | 1 ⊢ (¬ 𝑁 ∈ ℤ → (𝑊 cyclShift 𝑁) = ∅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 ∅c0 4332 ifcif 4524 〈cop 4631 × cxp 5682 dom cdm 5684 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 0cc0 11156 ℕ0cn0 12528 ℤcz 12615 ..^cfzo 13695 mod cmo 13910 ♯chash 14370 ++ cconcat 14609 substr csubstr 14679 prefix cpfx 14709 cyclShift ccsh 14827 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-csh 14828 | 
| This theorem is referenced by: 0csh0 14832 cshwcl 14837 | 
| Copyright terms: Public domain | W3C validator |