Detailed syntax breakdown of Definition df-cusp
| Step | Hyp | Ref
| Expression |
| 1 | | ccusp 24306 |
. 2
class
CUnifSp |
| 2 | | vc |
. . . . . . 7
setvar 𝑐 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑐 |
| 4 | | vw |
. . . . . . . . 9
setvar 𝑤 |
| 5 | 4 | cv 1539 |
. . . . . . . 8
class 𝑤 |
| 6 | | cuss 24262 |
. . . . . . . 8
class
UnifSt |
| 7 | 5, 6 | cfv 6561 |
. . . . . . 7
class
(UnifSt‘𝑤) |
| 8 | | ccfilu 24295 |
. . . . . . 7
class
CauFilu |
| 9 | 7, 8 | cfv 6561 |
. . . . . 6
class
(CauFilu‘(UnifSt‘𝑤)) |
| 10 | 3, 9 | wcel 2108 |
. . . . 5
wff 𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) |
| 11 | | ctopn 17466 |
. . . . . . . 8
class
TopOpen |
| 12 | 5, 11 | cfv 6561 |
. . . . . . 7
class
(TopOpen‘𝑤) |
| 13 | | cflim 23942 |
. . . . . . 7
class
fLim |
| 14 | 12, 3, 13 | co 7431 |
. . . . . 6
class
((TopOpen‘𝑤)
fLim 𝑐) |
| 15 | | c0 4333 |
. . . . . 6
class
∅ |
| 16 | 14, 15 | wne 2940 |
. . . . 5
wff
((TopOpen‘𝑤)
fLim 𝑐) ≠
∅ |
| 17 | 10, 16 | wi 4 |
. . . 4
wff (𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) |
| 18 | | cbs 17247 |
. . . . . 6
class
Base |
| 19 | 5, 18 | cfv 6561 |
. . . . 5
class
(Base‘𝑤) |
| 20 | | cfil 23853 |
. . . . 5
class
Fil |
| 21 | 19, 20 | cfv 6561 |
. . . 4
class
(Fil‘(Base‘𝑤)) |
| 22 | 17, 2, 21 | wral 3061 |
. . 3
wff
∀𝑐 ∈
(Fil‘(Base‘𝑤))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) |
| 23 | | cusp 24263 |
. . 3
class
UnifSp |
| 24 | 22, 4, 23 | crab 3436 |
. 2
class {𝑤 ∈ UnifSp ∣
∀𝑐 ∈
(Fil‘(Base‘𝑤))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} |
| 25 | 1, 24 | wceq 1540 |
1
wff CUnifSp =
{𝑤 ∈ UnifSp ∣
∀𝑐 ∈
(Fil‘(Base‘𝑤))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} |