![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusp | Structured version Visualization version GIF version |
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
Ref | Expression |
---|---|
iscusp | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6912 | . . 3 ⊢ (𝑤 = 𝑊 → (Fil‘(Base‘𝑤)) = (Fil‘(Base‘𝑊))) | |
2 | 2fveq3 6912 | . . . . 5 ⊢ (𝑤 = 𝑊 → (CauFilu‘(UnifSt‘𝑤)) = (CauFilu‘(UnifSt‘𝑊))) | |
3 | 2 | eleq2d 2825 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))) |
4 | fveq2 6907 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) | |
5 | 4 | oveq1d 7446 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((TopOpen‘𝑤) fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)) |
6 | 5 | neeq1d 2998 | . . . 4 ⊢ (𝑤 = 𝑊 → (((TopOpen‘𝑤) fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝑤 = 𝑊 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
8 | 1, 7 | raleqbidv 3344 | . 2 ⊢ (𝑤 = 𝑊 → (∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
9 | df-cusp 24323 | . 2 ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | |
10 | 8, 9 | elrab2 3698 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 ∅c0 4339 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TopOpenctopn 17468 Filcfil 23869 fLim cflim 23958 UnifStcuss 24278 UnifSpcusp 24279 CauFiluccfilu 24311 CUnifSpccusp 24322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-cusp 24323 |
This theorem is referenced by: cuspusp 24325 cuspcvg 24326 iscusp2 24327 cmetcusp 25402 |
Copyright terms: Public domain | W3C validator |