![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusp | Structured version Visualization version GIF version |
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
Ref | Expression |
---|---|
iscusp | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6896 | . . 3 ⊢ (𝑤 = 𝑊 → (Fil‘(Base‘𝑤)) = (Fil‘(Base‘𝑊))) | |
2 | 2fveq3 6896 | . . . . 5 ⊢ (𝑤 = 𝑊 → (CauFilu‘(UnifSt‘𝑤)) = (CauFilu‘(UnifSt‘𝑊))) | |
3 | 2 | eleq2d 2818 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))) |
4 | fveq2 6891 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) | |
5 | 4 | oveq1d 7427 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((TopOpen‘𝑤) fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)) |
6 | 5 | neeq1d 2999 | . . . 4 ⊢ (𝑤 = 𝑊 → (((TopOpen‘𝑤) fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝑤 = 𝑊 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
8 | 1, 7 | raleqbidv 3341 | . 2 ⊢ (𝑤 = 𝑊 → (∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
9 | df-cusp 24123 | . 2 ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | |
10 | 8, 9 | elrab2 3686 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∅c0 4322 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 TopOpenctopn 17374 Filcfil 23669 fLim cflim 23758 UnifStcuss 24078 UnifSpcusp 24079 CauFiluccfilu 24111 CUnifSpccusp 24122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7415 df-cusp 24123 |
This theorem is referenced by: cuspusp 24125 cuspcvg 24126 iscusp2 24127 cmetcusp 25202 |
Copyright terms: Public domain | W3C validator |