| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscusp | Structured version Visualization version GIF version | ||
| Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| iscusp | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6877 | . . 3 ⊢ (𝑤 = 𝑊 → (Fil‘(Base‘𝑤)) = (Fil‘(Base‘𝑊))) | |
| 2 | 2fveq3 6877 | . . . . 5 ⊢ (𝑤 = 𝑊 → (CauFilu‘(UnifSt‘𝑤)) = (CauFilu‘(UnifSt‘𝑊))) | |
| 3 | 2 | eleq2d 2819 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))) |
| 4 | fveq2 6872 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) | |
| 5 | 4 | oveq1d 7414 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((TopOpen‘𝑤) fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)) |
| 6 | 5 | neeq1d 2990 | . . . 4 ⊢ (𝑤 = 𝑊 → (((TopOpen‘𝑤) fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
| 7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝑤 = 𝑊 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| 8 | 1, 7 | raleqbidv 3323 | . 2 ⊢ (𝑤 = 𝑊 → (∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| 9 | df-cusp 24221 | . 2 ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | |
| 10 | 8, 9 | elrab2 3672 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∅c0 4306 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 TopOpenctopn 17420 Filcfil 23768 fLim cflim 23857 UnifStcuss 24177 UnifSpcusp 24178 CauFiluccfilu 24209 CUnifSpccusp 24220 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-iota 6480 df-fv 6535 df-ov 7402 df-cusp 24221 |
| This theorem is referenced by: cuspusp 24223 cuspcvg 24224 iscusp2 24225 cmetcusp 25291 |
| Copyright terms: Public domain | W3C validator |