MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusp Structured version   Visualization version   GIF version

Theorem iscusp 23451
Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.)
Assertion
Ref Expression
iscusp (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
Distinct variable group:   𝑊,𝑐

Proof of Theorem iscusp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6779 . . 3 (𝑤 = 𝑊 → (Fil‘(Base‘𝑤)) = (Fil‘(Base‘𝑊)))
2 2fveq3 6779 . . . . 5 (𝑤 = 𝑊 → (CauFilu‘(UnifSt‘𝑤)) = (CauFilu‘(UnifSt‘𝑊)))
32eleq2d 2824 . . . 4 (𝑤 = 𝑊 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊))))
4 fveq2 6774 . . . . . 6 (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊))
54oveq1d 7290 . . . . 5 (𝑤 = 𝑊 → ((TopOpen‘𝑤) fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐))
65neeq1d 3003 . . . 4 (𝑤 = 𝑊 → (((TopOpen‘𝑤) fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
73, 6imbi12d 345 . . 3 (𝑤 = 𝑊 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
81, 7raleqbidv 3336 . 2 (𝑤 = 𝑊 → (∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
9 df-cusp 23450 . 2 CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)}
108, 9elrab2 3627 1 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  c0 4256  cfv 6433  (class class class)co 7275  Basecbs 16912  TopOpenctopn 17132  Filcfil 22996   fLim cflim 23085  UnifStcuss 23405  UnifSpcusp 23406  CauFiluccfilu 23438  CUnifSpccusp 23449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-cusp 23450
This theorem is referenced by:  cuspusp  23452  cuspcvg  23453  iscusp2  23454  cmetcusp  24518
  Copyright terms: Public domain W3C validator