| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscusp | Structured version Visualization version GIF version | ||
| Description: The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| Ref | Expression |
|---|---|
| iscusp | ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6863 | . . 3 ⊢ (𝑤 = 𝑊 → (Fil‘(Base‘𝑤)) = (Fil‘(Base‘𝑊))) | |
| 2 | 2fveq3 6863 | . . . . 5 ⊢ (𝑤 = 𝑊 → (CauFilu‘(UnifSt‘𝑤)) = (CauFilu‘(UnifSt‘𝑊))) | |
| 3 | 2 | eleq2d 2814 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) ↔ 𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)))) |
| 4 | fveq2 6858 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (TopOpen‘𝑤) = (TopOpen‘𝑊)) | |
| 5 | 4 | oveq1d 7402 | . . . . 5 ⊢ (𝑤 = 𝑊 → ((TopOpen‘𝑤) fLim 𝑐) = ((TopOpen‘𝑊) fLim 𝑐)) |
| 6 | 5 | neeq1d 2984 | . . . 4 ⊢ (𝑤 = 𝑊 → (((TopOpen‘𝑤) fLim 𝑐) ≠ ∅ ↔ ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)) |
| 7 | 3, 6 | imbi12d 344 | . . 3 ⊢ (𝑤 = 𝑊 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| 8 | 1, 7 | raleqbidv 3319 | . 2 ⊢ (𝑤 = 𝑊 → (∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅) ↔ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| 9 | df-cusp 24185 | . 2 ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | |
| 10 | 8, 9 | elrab2 3662 | 1 ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 TopOpenctopn 17384 Filcfil 23732 fLim cflim 23821 UnifStcuss 24141 UnifSpcusp 24142 CauFiluccfilu 24173 CUnifSpccusp 24184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-cusp 24185 |
| This theorem is referenced by: cuspusp 24187 cuspcvg 24188 iscusp2 24189 cmetcusp 25254 |
| Copyright terms: Public domain | W3C validator |