Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cvlat Structured version   Visualization version   GIF version

Definition df-cvlat 37597
Description: Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
df-cvlat CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
Distinct variable group:   𝑘,𝑐,𝑎,𝑏

Detailed syntax breakdown of Definition df-cvlat
StepHypRef Expression
1 clc 37540 . 2 class CvLat
2 va . . . . . . . . . . 11 setvar 𝑎
32cv 1539 . . . . . . . . . 10 class 𝑎
4 vc . . . . . . . . . . 11 setvar 𝑐
54cv 1539 . . . . . . . . . 10 class 𝑐
6 vk . . . . . . . . . . . 12 setvar 𝑘
76cv 1539 . . . . . . . . . . 11 class 𝑘
8 cple 17066 . . . . . . . . . . 11 class le
97, 8cfv 6479 . . . . . . . . . 10 class (le‘𝑘)
103, 5, 9wbr 5092 . . . . . . . . 9 wff 𝑎(le‘𝑘)𝑐
1110wn 3 . . . . . . . 8 wff ¬ 𝑎(le‘𝑘)𝑐
12 vb . . . . . . . . . . 11 setvar 𝑏
1312cv 1539 . . . . . . . . . 10 class 𝑏
14 cjn 18126 . . . . . . . . . . 11 class join
157, 14cfv 6479 . . . . . . . . . 10 class (join‘𝑘)
165, 13, 15co 7337 . . . . . . . . 9 class (𝑐(join‘𝑘)𝑏)
173, 16, 9wbr 5092 . . . . . . . 8 wff 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)
1811, 17wa 396 . . . . . . 7 wff 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏))
195, 3, 15co 7337 . . . . . . . 8 class (𝑐(join‘𝑘)𝑎)
2013, 19, 9wbr 5092 . . . . . . 7 wff 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎)
2118, 20wi 4 . . . . . 6 wff ((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
22 cbs 17009 . . . . . . 7 class Base
237, 22cfv 6479 . . . . . 6 class (Base‘𝑘)
2421, 4, 23wral 3061 . . . . 5 wff 𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
25 catm 37538 . . . . . 6 class Atoms
267, 25cfv 6479 . . . . 5 class (Atoms‘𝑘)
2724, 12, 26wral 3061 . . . 4 wff 𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
2827, 2, 26wral 3061 . . 3 wff 𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
29 cal 37539 . . 3 class AtLat
3028, 6, 29crab 3403 . 2 class {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
311, 30wceq 1540 1 wff CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
Colors of variables: wff setvar class
This definition is referenced by:  iscvlat  37598
  Copyright terms: Public domain W3C validator