Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-cvlat Structured version   Visualization version   GIF version

Definition df-cvlat 39286
Description: Define the class of atomic lattices with the covering property. (This is actually the exchange property, but they are equivalent. The literature usually uses the covering property terminology.) (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
df-cvlat CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
Distinct variable group:   𝑘,𝑐,𝑎,𝑏

Detailed syntax breakdown of Definition df-cvlat
StepHypRef Expression
1 clc 39229 . 2 class CvLat
2 va . . . . . . . . . . 11 setvar 𝑎
32cv 1539 . . . . . . . . . 10 class 𝑎
4 vc . . . . . . . . . . 11 setvar 𝑐
54cv 1539 . . . . . . . . . 10 class 𝑐
6 vk . . . . . . . . . . . 12 setvar 𝑘
76cv 1539 . . . . . . . . . . 11 class 𝑘
8 cple 17276 . . . . . . . . . . 11 class le
97, 8cfv 6530 . . . . . . . . . 10 class (le‘𝑘)
103, 5, 9wbr 5119 . . . . . . . . 9 wff 𝑎(le‘𝑘)𝑐
1110wn 3 . . . . . . . 8 wff ¬ 𝑎(le‘𝑘)𝑐
12 vb . . . . . . . . . . 11 setvar 𝑏
1312cv 1539 . . . . . . . . . 10 class 𝑏
14 cjn 18321 . . . . . . . . . . 11 class join
157, 14cfv 6530 . . . . . . . . . 10 class (join‘𝑘)
165, 13, 15co 7403 . . . . . . . . 9 class (𝑐(join‘𝑘)𝑏)
173, 16, 9wbr 5119 . . . . . . . 8 wff 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)
1811, 17wa 395 . . . . . . 7 wff 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏))
195, 3, 15co 7403 . . . . . . . 8 class (𝑐(join‘𝑘)𝑎)
2013, 19, 9wbr 5119 . . . . . . 7 wff 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎)
2118, 20wi 4 . . . . . 6 wff ((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
22 cbs 17226 . . . . . . 7 class Base
237, 22cfv 6530 . . . . . 6 class (Base‘𝑘)
2421, 4, 23wral 3051 . . . . 5 wff 𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
25 catm 39227 . . . . . 6 class Atoms
267, 25cfv 6530 . . . . 5 class (Atoms‘𝑘)
2724, 12, 26wral 3051 . . . 4 wff 𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
2827, 2, 26wral 3051 . . 3 wff 𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))
29 cal 39228 . . 3 class AtLat
3028, 6, 29crab 3415 . 2 class {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
311, 30wceq 1540 1 wff CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
Colors of variables: wff setvar class
This definition is referenced by:  iscvlat  39287
  Copyright terms: Public domain W3C validator