![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlrelat1 | Structured version Visualization version GIF version |
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 29773, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
atlrelat1.b | ⊢ 𝐵 = (Base‘𝐾) |
atlrelat1.l | ⊢ ≤ = (le‘𝐾) |
atlrelat1.s | ⊢ < = (lt‘𝐾) |
atlrelat1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlrelat1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1266 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
2 | atlpos 35375 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
4 | atlrelat1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | atlrelat1.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
6 | atlrelat1.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
7 | 4, 5, 6 | pltnle 17326 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) |
8 | 7 | ex 403 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
9 | 3, 8 | syld3an1 1533 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
10 | iman 392 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋)) | |
11 | ancom 454 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋) ↔ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
12 | 10, 11 | xchbinx 326 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
13 | 12 | ralbii 3189 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
14 | atlrelat1.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 4, 5, 14 | atlatle 35394 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
16 | 15 | 3com23 1160 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
17 | 16 | biimprd 240 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) → 𝑌 ≤ 𝑋)) |
18 | 13, 17 | syl5bir 235 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) → 𝑌 ≤ 𝑋)) |
19 | 18 | con3d 150 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
20 | dfrex2 3204 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
21 | 19, 20 | syl6ibr 244 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
22 | 9, 21 | syld 47 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 class class class wbr 4875 ‘cfv 6127 Basecbs 16229 lecple 16319 Posetcpo 17300 ltcplt 17301 CLatccla 17467 OMLcoml 35249 Atomscatm 35337 AtLatcal 35338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-proset 17288 df-poset 17306 df-plt 17318 df-lub 17334 df-glb 17335 df-join 17336 df-meet 17337 df-p0 17399 df-lat 17406 df-clat 17468 df-oposet 35250 df-ol 35252 df-oml 35253 df-covers 35340 df-ats 35341 df-atl 35372 |
This theorem is referenced by: cvlcvr1 35413 hlrelat1 35474 |
Copyright terms: Public domain | W3C validator |