![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlrelat1 | Structured version Visualization version GIF version |
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32245, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
atlrelat1.b | ⊢ 𝐵 = (Base‘𝐾) |
atlrelat1.l | ⊢ ≤ = (le‘𝐾) |
atlrelat1.s | ⊢ < = (lt‘𝐾) |
atlrelat1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlrelat1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1202 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
2 | atlpos 38903 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
4 | atlrelat1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | atlrelat1.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
6 | atlrelat1.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
7 | 4, 5, 6 | pltnle 18333 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) |
8 | 7 | ex 411 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
9 | 3, 8 | syld3an1 1407 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
10 | iman 400 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋)) | |
11 | ancom 459 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋) ↔ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
12 | 10, 11 | xchbinx 333 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
13 | 12 | ralbii 3082 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
14 | atlrelat1.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 4, 5, 14 | atlatle 38922 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
16 | 15 | 3com23 1123 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
17 | 16 | biimprd 247 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) → 𝑌 ≤ 𝑋)) |
18 | 13, 17 | biimtrrid 242 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) → 𝑌 ≤ 𝑋)) |
19 | 18 | con3d 152 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
20 | dfrex2 3062 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
21 | 19, 20 | imbitrrdi 251 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
22 | 9, 21 | syld 47 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 Basecbs 17183 lecple 17243 Posetcpo 18302 ltcplt 18303 CLatccla 18493 OMLcoml 38777 Atomscatm 38865 AtLatcal 38866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-lat 18427 df-clat 18494 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 |
This theorem is referenced by: cvlcvr1 38941 hlrelat1 39003 |
Copyright terms: Public domain | W3C validator |