Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlrelat1 Structured version   Visualization version   GIF version

Theorem atlrelat1 38923
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32245, with swapped, analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
atlrelat1.b 𝐵 = (Base‘𝐾)
atlrelat1.l = (le‘𝐾)
atlrelat1.s < = (lt‘𝐾)
atlrelat1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlrelat1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   < (𝑝)

Proof of Theorem atlrelat1
StepHypRef Expression
1 simp13 1202 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ AtLat)
2 atlpos 38903 . . . 4 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
4 atlrelat1.b . . . . 5 𝐵 = (Base‘𝐾)
5 atlrelat1.l . . . . 5 = (le‘𝐾)
6 atlrelat1.s . . . . 5 < = (lt‘𝐾)
74, 5, 6pltnle 18333 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 𝑋)
87ex 411 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 𝑋))
93, 8syld3an1 1407 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 𝑋))
10 iman 400 . . . . . . 7 ((𝑝 𝑌𝑝 𝑋) ↔ ¬ (𝑝 𝑌 ∧ ¬ 𝑝 𝑋))
11 ancom 459 . . . . . . 7 ((𝑝 𝑌 ∧ ¬ 𝑝 𝑋) ↔ (¬ 𝑝 𝑋𝑝 𝑌))
1210, 11xchbinx 333 . . . . . 6 ((𝑝 𝑌𝑝 𝑋) ↔ ¬ (¬ 𝑝 𝑋𝑝 𝑌))
1312ralbii 3082 . . . . 5 (∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋) ↔ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌))
14 atlrelat1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
154, 5, 14atlatle 38922 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
16153com23 1123 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
1716biimprd 247 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋) → 𝑌 𝑋))
1813, 17biimtrrid 242 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌) → 𝑌 𝑋))
1918con3d 152 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋 → ¬ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌)))
20 dfrex2 3062 . . 3 (∃𝑝𝐴𝑝 𝑋𝑝 𝑌) ↔ ¬ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌))
2119, 20imbitrrdi 251 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
229, 21syld 47 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149  cfv 6549  Basecbs 17183  lecple 17243  Posetcpo 18302  ltcplt 18303  CLatccla 18493  OMLcoml 38777  Atomscatm 38865  AtLatcal 38866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-proset 18290  df-poset 18308  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-lat 18427  df-clat 18494  df-oposet 38778  df-ol 38780  df-oml 38781  df-covers 38868  df-ats 38869  df-atl 38900
This theorem is referenced by:  cvlcvr1  38941  hlrelat1  39003
  Copyright terms: Public domain W3C validator