Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlrelat1 Structured version   Visualization version   GIF version

Theorem atlrelat1 39277
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32395, with swapped, analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
atlrelat1.b 𝐵 = (Base‘𝐾)
atlrelat1.l = (le‘𝐾)
atlrelat1.s < = (lt‘𝐾)
atlrelat1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlrelat1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   < (𝑝)

Proof of Theorem atlrelat1
StepHypRef Expression
1 simp13 1205 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ AtLat)
2 atlpos 39257 . . . 4 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
4 atlrelat1.b . . . . 5 𝐵 = (Base‘𝐾)
5 atlrelat1.l . . . . 5 = (le‘𝐾)
6 atlrelat1.s . . . . 5 < = (lt‘𝐾)
74, 5, 6pltnle 18408 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 𝑋)
87ex 412 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 𝑋))
93, 8syld3an1 1410 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 𝑋))
10 iman 401 . . . . . . 7 ((𝑝 𝑌𝑝 𝑋) ↔ ¬ (𝑝 𝑌 ∧ ¬ 𝑝 𝑋))
11 ancom 460 . . . . . . 7 ((𝑝 𝑌 ∧ ¬ 𝑝 𝑋) ↔ (¬ 𝑝 𝑋𝑝 𝑌))
1210, 11xchbinx 334 . . . . . 6 ((𝑝 𝑌𝑝 𝑋) ↔ ¬ (¬ 𝑝 𝑋𝑝 𝑌))
1312ralbii 3099 . . . . 5 (∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋) ↔ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌))
14 atlrelat1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
154, 5, 14atlatle 39276 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
16153com23 1126 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
1716biimprd 248 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋) → 𝑌 𝑋))
1813, 17biimtrrid 243 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌) → 𝑌 𝑋))
1918con3d 152 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋 → ¬ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌)))
20 dfrex2 3079 . . 3 (∃𝑝𝐴𝑝 𝑋𝑝 𝑌) ↔ ¬ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌))
2119, 20imbitrrdi 252 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
229, 21syld 47 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  ltcplt 18378  CLatccla 18568  OMLcoml 39131  Atomscatm 39219  AtLatcal 39220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254
This theorem is referenced by:  cvlcvr1  39295  hlrelat1  39357
  Copyright terms: Public domain W3C validator