Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atlrelat1 Structured version   Visualization version   GIF version

Theorem atlrelat1 36499
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 30125, with swapped, analog.) (Contributed by NM, 4-Dec-2011.)
Hypotheses
Ref Expression
atlrelat1.b 𝐵 = (Base‘𝐾)
atlrelat1.l = (le‘𝐾)
atlrelat1.s < = (lt‘𝐾)
atlrelat1.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atlrelat1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   < (𝑝)

Proof of Theorem atlrelat1
StepHypRef Expression
1 simp13 1202 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ AtLat)
2 atlpos 36479 . . . 4 (𝐾 ∈ AtLat → 𝐾 ∈ Poset)
31, 2syl 17 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
4 atlrelat1.b . . . . 5 𝐵 = (Base‘𝐾)
5 atlrelat1.l . . . . 5 = (le‘𝐾)
6 atlrelat1.s . . . . 5 < = (lt‘𝐾)
74, 5, 6pltnle 17555 . . . 4 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 𝑋)
87ex 416 . . 3 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 𝑋))
93, 8syld3an1 1407 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 𝑋))
10 iman 405 . . . . . . 7 ((𝑝 𝑌𝑝 𝑋) ↔ ¬ (𝑝 𝑌 ∧ ¬ 𝑝 𝑋))
11 ancom 464 . . . . . . 7 ((𝑝 𝑌 ∧ ¬ 𝑝 𝑋) ↔ (¬ 𝑝 𝑋𝑝 𝑌))
1210, 11xchbinx 337 . . . . . 6 ((𝑝 𝑌𝑝 𝑋) ↔ ¬ (¬ 𝑝 𝑋𝑝 𝑌))
1312ralbii 3153 . . . . 5 (∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋) ↔ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌))
14 atlrelat1.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
154, 5, 14atlatle 36498 . . . . . . 7 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
16153com23 1123 . . . . . 6 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑌 𝑋 ↔ ∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋)))
1716biimprd 251 . . . . 5 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 (𝑝 𝑌𝑝 𝑋) → 𝑌 𝑋))
1813, 17syl5bir 246 . . . 4 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌) → 𝑌 𝑋))
1918con3d 155 . . 3 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋 → ¬ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌)))
20 dfrex2 3227 . . 3 (∃𝑝𝐴𝑝 𝑋𝑝 𝑌) ↔ ¬ ∀𝑝𝐴 ¬ (¬ 𝑝 𝑋𝑝 𝑌))
2119, 20syl6ibr 255 . 2 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑌 𝑋 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
229, 21syld 47 1 (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋𝐵𝑌𝐵) → (𝑋 < 𝑌 → ∃𝑝𝐴𝑝 𝑋𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wral 3126  wrex 3127   class class class wbr 5039  cfv 6328  Basecbs 16462  lecple 16551  Posetcpo 17529  ltcplt 17530  CLatccla 17696  OMLcoml 36353  Atomscatm 36441  AtLatcal 36442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-lat 17635  df-clat 17697  df-oposet 36354  df-ol 36356  df-oml 36357  df-covers 36444  df-ats 36445  df-atl 36476
This theorem is referenced by:  cvlcvr1  36517  hlrelat1  36578
  Copyright terms: Public domain W3C validator