![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atlrelat1 | Structured version Visualization version GIF version |
Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32395, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) |
Ref | Expression |
---|---|
atlrelat1.b | ⊢ 𝐵 = (Base‘𝐾) |
atlrelat1.l | ⊢ ≤ = (le‘𝐾) |
atlrelat1.s | ⊢ < = (lt‘𝐾) |
atlrelat1.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atlrelat1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp13 1205 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
2 | atlpos 39257 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
4 | atlrelat1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | atlrelat1.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
6 | atlrelat1.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
7 | 4, 5, 6 | pltnle 18408 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) |
8 | 7 | ex 412 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
9 | 3, 8 | syld3an1 1410 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) |
10 | iman 401 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋)) | |
11 | ancom 460 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋) ↔ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
12 | 10, 11 | xchbinx 334 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
13 | 12 | ralbii 3099 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) |
14 | atlrelat1.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 4, 5, 14 | atlatle 39276 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
16 | 15 | 3com23 1126 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) |
17 | 16 | biimprd 248 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) → 𝑌 ≤ 𝑋)) |
18 | 13, 17 | biimtrrid 243 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) → 𝑌 ≤ 𝑋)) |
19 | 18 | con3d 152 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
20 | dfrex2 3079 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
21 | 19, 20 | imbitrrdi 252 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
22 | 9, 21 | syld 47 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 lecple 17318 Posetcpo 18377 ltcplt 18378 CLatccla 18568 OMLcoml 39131 Atomscatm 39219 AtLatcal 39220 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 |
This theorem is referenced by: cvlcvr1 39295 hlrelat1 39357 |
Copyright terms: Public domain | W3C validator |