|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atlrelat1 | Structured version Visualization version GIF version | ||
| Description: An atomistic lattice with 0 is relatively atomic. Part of Lemma 7.2 of [MaedaMaeda] p. 30. (chpssati 32382, with ∧ swapped, analog.) (Contributed by NM, 4-Dec-2011.) | 
| Ref | Expression | 
|---|---|
| atlrelat1.b | ⊢ 𝐵 = (Base‘𝐾) | 
| atlrelat1.l | ⊢ ≤ = (le‘𝐾) | 
| atlrelat1.s | ⊢ < = (lt‘𝐾) | 
| atlrelat1.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| atlrelat1 | ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp13 1206 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ AtLat) | |
| 2 | atlpos 39302 | . . . 4 ⊢ (𝐾 ∈ AtLat → 𝐾 ∈ Poset) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) | 
| 4 | atlrelat1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | atlrelat1.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | atlrelat1.s | . . . . 5 ⊢ < = (lt‘𝐾) | |
| 7 | 4, 5, 6 | pltnle 18383 | . . . 4 ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 < 𝑌) → ¬ 𝑌 ≤ 𝑋) | 
| 8 | 7 | ex 412 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) | 
| 9 | 3, 8 | syld3an1 1412 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ¬ 𝑌 ≤ 𝑋)) | 
| 10 | iman 401 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋)) | |
| 11 | ancom 460 | . . . . . . 7 ⊢ ((𝑝 ≤ 𝑌 ∧ ¬ 𝑝 ≤ 𝑋) ↔ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
| 12 | 10, 11 | xchbinx 334 | . . . . . 6 ⊢ ((𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | 
| 13 | 12 | ralbii 3093 | . . . . 5 ⊢ (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) ↔ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | 
| 14 | atlrelat1.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 15 | 4, 5, 14 | atlatle 39321 | . . . . . . 7 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) | 
| 16 | 15 | 3com23 1127 | . . . . . 6 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ≤ 𝑋 ↔ ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋))) | 
| 17 | 16 | biimprd 248 | . . . . 5 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑌 → 𝑝 ≤ 𝑋) → 𝑌 ≤ 𝑋)) | 
| 18 | 13, 17 | biimtrrid 243 | . . . 4 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) → 𝑌 ≤ 𝑋)) | 
| 19 | 18 | con3d 152 | . . 3 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | 
| 20 | dfrex2 3073 | . . 3 ⊢ (∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ¬ ∀𝑝 ∈ 𝐴 ¬ (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) | |
| 21 | 19, 20 | imbitrrdi 252 | . 2 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑌 ≤ 𝑋 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | 
| 22 | 9, 21 | syld 47 | 1 ⊢ (((𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 → ∃𝑝 ∈ 𝐴 (¬ 𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 Basecbs 17247 lecple 17304 Posetcpo 18353 ltcplt 18354 CLatccla 18543 OMLcoml 39176 Atomscatm 39264 AtLatcal 39265 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 | 
| This theorem is referenced by: cvlcvr1 39340 hlrelat1 39402 | 
| Copyright terms: Public domain | W3C validator |